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Abstract

Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous subtype of breast cancer with
high recurrence and early metastasis. Unlike hormone receptor-positive or HER2-positive cancers,
TNBC lacks targeted therapies, and standard chemotherapy often yields limited and transient responses,
making treatment challenging. The tumor microenvironment (TME) plays a central role in TNBC
progression, immune evasion, and therapy resistance. It comprises multiple cellular components, tumor-
associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), tumor-infiltrating lymphocytes
(TILs), and myeloid-derived suppressor cells (MDSCs), as well as structural and signaling elements
such as the extracellular matrix (ECM), growth factors, and cytokines. Interactions among these
components create an immunosuppressive, pro-tumorigenic milieu that supports cancer cell survival,
invasion, and metastasis. Targeting the TME has emerged as a promising therapeutic strategy.
Immunotherapies, particularly immune checkpoint inhibitors (ICIs), can restore antitumor immunity by
reversing T cell exhaustion and mitigating immune suppression. Response rates remain variable,
prompting exploration of combination approaches pairing ICIs with chemotherapy, radiotherapy, or
TME-modulating agents to enhance efficacy. Direct targeting of TME components, including CAFs,
TAMs, MDSCs, and ECM remodeling enzymes, is also being developed to disrupt the supportive tumor
niche and enhance drug delivery. This review provides a comprehensive overview of the TNBC TME,
emphasizing its role in tumor progression and therapy resistance, and summarizes current and emerging
strategies to target the TME. By clarifying complex cellular and molecular interactions, these
approaches aim to sensitize tumors to therapy, prevent metastasis, and support the development of more
effective, personalized treatments for TNBC.
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1. Introduction

Global breast cancer incidence rates are increasing, accounting for 31% of female cancers, and the
disease burden is projected to rise by 40% by 2040 (1, 2). Triple-negative breast cancer (TNBC) lacks
expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor
receptor 2 (HER2) (3, 4). TNBC is the most aggressive breast cancer subtype, representing 10-15% of
all breast cancer cases globally (5-8). TNBC is classified into four molecular subtypes under the
TNBCtype-4 scheme: basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal (M), and luminal androgen
receptor (LAR) (9). These subtypes have distinct characteristics and different responses to therapy and
prognosis (9-11) (Figure 1). Approximately 25% of TNBC patients have germline BRCA1/2 mutations
(12). The absence of conventional therapeutic targets renders TNBC difficult to manage, with treatment
primarily dependent on traditional chemotherapy that often yields limited efficacy. Consequently,
TNBC is associated with high recurrence and metastasis rates, resulting in poor patient prognosis (13-
18). For advanced-stage TNBC, the median survival remains less than 24 months (19-22).

BL1 (35%) Cell cycle, DNA damage Platinum-based chemotherapy

Mesenchymal differenciation

M (27%) and proliferation EMT and CSCs inhibitors
ﬁBCtype-4
BL2 (22%) Growth factor mTOR inhibitors
signaling
LAR (16%) Hormone-related Anti-androgen therapy or

CDK4/6 inhibitors

! l !

Molecular subtypes Characteristics Therapeutic strategies

Figure 1. Components of the triple-negative breast cancer (TNBC) tumor microenvironment (TME). This schematic
depicts the four main TNBC subtypes under the TNBCtype-4 classification, highlighting their biological pathways and
corresponding therapies. Basal-Like 1 (BLI, ~35%) exhibits increased cell-cycle and DNA-damage response, suggesting
sensitivity to platinum chemotherapy and other DNA-damaging agents. Basal-Like 2 (BL2, ~22%) exhibits active growth factor
signaling, making it a potential target for mTOR inhibitors. The Mesenchymal (M, ~27%) subtype drives epithelial-to-
mesenchymal transition (EMT); therapies may target EMT or cancer stem cells (CSCs). Luminal Androgen Receptor (LAR,
~16%) is linked to androgen receptor (AR) signaling, suggesting potential for anti-androgen therapy. BL1: basal-like 1, BL2:
basal-like 2, M: mesenchymal, LAR: luminal androgen receptor, EMT: epithelial-to-mesenchymal transition, CSCs: cancer
stem cells.

TNBC’s heterogeneity spans clinical, histopathological, and molecular features, marked by high
genomic instability and mutation rates (13, 23, 24). TNBC has a greater tumor mutational burden (25),
which increases neoantigen production and the chances of immune detection (26). Yet, immunotherapy
for TNBC is limited by low immunogenicity and an immunosuppressive tumor microenvironment
(TME) (27). These features increase both neoantigen generation and immunogenicity, suggesting
potential for immunotherapy (28, 29). However, complexity makes effective treatment strategies
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challenging. The TME heavily influences TNBC’s progression, immune evasion, and treatment
resistance (14, 15). It is a complex, dynamic environment of diverse cellular and non-cellular
components that interact closely with tumor cells (17, 30, 31). The TME contains immune cells like
tumor-associated macrophages (TAMs), regulatory T cells (Tregs), tumor-infiltrating lymphocytes
(TILs), and myeloid-derived suppressor cells (MDSCs), together with stromal cells, cancer-associated
fibroblasts (CAFs), endothelial cells, extracellular matrix (ECM), and factors like cytokines,
chemokines, and growth factors (32-39) (Figure 2). TNBC TME is especially heterogeneous, with an
immunosuppressive profile that promotes tumor growth and treatment resistance (34, 40, 41).
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Figure 2. Components of the triple-negative breast cancer (TNBC) tumor microenvironment (TME).
The TNBC TME is a heterogeneous ecosystem composed of cellular and non-cellular elements that collectively promote tumor
growth, immune evasion, and therapeutic resistance. Key cellular components include tumor-associated macrophages,
cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), T cells, B cells, dendritic cells (DCs),
natural killer (NK) cells, and neutrophils. Non-cellular components include the extracellular matrix (ECM) and soluble factors
such as cytokines, chemokines, and growth factors, which together shape an immunosuppressive and tumor-supportive milieu.
TNBC, triple-negative breast cancer; TME, tumor microenvironment, CAF, cancer-associated fibroblast; ECM, extracellular
matrix; MDSC, myeloid-derived suppressor cell; DC, dendritic cell; NK, natural killer cell. Figure created with BioRender.

Given the limited conventional treatments and the TME’s central role, research now focuses on
targeting the TME to enhance anti-tumor immunity and overcome resistance (3, 15). Immunotherapies,
especially immune checkpoint inhibitors (ICIs), are promising for restoring anti-tumor immune
responses and are changing care in early and metastatic TNBC (15, 28, 42). However, not all patients
respond to ICIs (response rate 5—23%) (43-47). Resistance remains a significant challenge; therefore, a
better understanding of the TME and the development of combination approaches are crucial for
improving therapy. New strategies target TME components such as TAMs, CAFs, and MDSCs, or
target the ECM, inhibit angiogenesis, or alter tumor metabolism, often in combination with
immunotherapy or chemotherapy (38, 48-51).

This review utilizes the TNBCtype-4 molecular subtyping system, which categorizes TNBC into four
tumor-intrinsic subtypes: basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal (M), and luminal
androgen receptor (LAR). This classification represents a refinement of the earlier TNBC-type system.
The rationale for this consolidation is supported by histopathological analyses, which revealed that the
transcriptional profiles of the previously defined immunomodulatory (IM) and mesenchymal stem-like
(MSL) subtypes were not derived from the tumor epithelium (9). Instead, the IM signature was
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predominantly attributable to infiltrating lymphoid cells, while the MSL signature originated from
tumor-associated stromal cells. Consequently, the TNBC-type-4 system provides a more accurate
representation of tumor cell-specific biology, making it a robust framework for analyzing how intrinsic
cancer cell pathways dictate interactions with the surrounding tumor microenvironment and influence
therapeutic vulnerabilities.

2. Understanding the Tumor Microenvironment in Triple-Negative Breast Cancer

The TME in TNBC is highly complex and heterogeneous, exerting a significant influence on tumor
behavior and therapeutic response (13, 14, 52, 53). Compared with hormone receptor-positive or
HER2-positive breast cancers, TNBC shows more extensive interactions with its microenvironment,
characterized by abundant immune cell infiltration and a dynamic stromal compartment (15, 28, 54).
This heterogeneity extends beyond genetic and molecular differences within tumor cells to include the
diverse composition and spatial organization of TME components (13, 52, 55, 56). A comprehensive
understanding of this complexity is essential for the development of effective targeted therapies.

2.1 Cellular Components of the TNBC TME

The TNBC TME cellular landscape comprises a range of immune and stromal cell populations that
interact extensively with cancer cells. These interactions can either promote or inhibit tumor growth,
significantly affecting therapeutic outcomes.

2.1.1 Tumor-Associated Macrophages (TAMs)

TAMs are among the most abundant immune cell populations in the TNBC TME and play critical,
often dual, roles in tumor progression (17,37, 41, 57, 58). Macrophages are highly plastic and can
polarize into different functional phenotypes, broadly classified as M1 (pro-inflammatory, anti-tumor)
and M2 (anti-inflammatory, pro-tumor) (17, 37, 41, 59, 60). In the TNBC TME, TAMs are frequently
skewed towards the M2 phenotype, promoting tumor growth, angiogenesis, metastasis, and
immunosuppression (57, 61). This polarization triggers signaling pathways that further reinforce the
same polarized state. For example, cytokines such as IL-4 and IL-13 activate the JAK1/STAT6 pathway
(62, 63), while IL-10 activates JAK1/STATS3 signaling (64), leading to the transcriptional upregulation
of typical M2 markers, including Arginase 1, CD206, and immunosuppressive factors (65). The
PI3K/AKT pathway is also a central node that integrates various signals to promote M2 survival and
function (66). Studies highlight the intricate crosstalk between TNBC cells and TAMs. For instance,
M2-type TAMs promote cancer stemness in TNBC cells by secreting vascular endothelial growth factor
A (VEGFA) (17). Conversely, TNBC cells educated by TAMs exhibit elevated VEGFA, which further
regulates macrophage polarization, forming a positive feedback loop that strengthens the cancer stem
cell (CSC) phenotype via the VEGFA/NRP-1/GAPVD1/Wnt/B-catenin pathway (17).

This study underscores the pro-tumorigenic role of TAMs and the importance of this specific signaling
axis in promoting stemness and potentially contributing to an immunosuppressive TME (Figure 3). The
persistent activation of these intracellular networks, such as STAT3 and B-catenin, not only maintains
the M2 phenotype but also establishes a feed-forward loop that reinforces the immunosuppressive TME
(65, 67).The microenvironment of tumor occurrence is particularly rich in CD163+ macrophages,
which are associated with a poor prognosis (68-70). An eNAMPT/Ac-STAT3/DIRAS2 axis was
identified in TAM-TNBC cell crosstalk, and CD163+ M2-like TAMs are associated with an
unfavorable prognosis in TNBC (57). TNBC cell-conditioned medium induces M2 polarization, and
these TAMs secrete eNAMPT, which activates STAT3 in TNBC cells via CCRS, downregulates the
cancer suppressor DIRAS2, and increases CCL2 secretion. This creates a feedback loop in which CCL2
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recruits more macrophages, thereby perpetuating the pro-tumorigenic environment (57). The eNAMPT-
mediated activation of STAT3 is a prime example of a core intracellular signaling network driving
tumor progression (57). The polarization of TAMs and the related signaling axes is shown in Figure 3.

IrLL—4 i-10-4
\ / / Pro-inflammatory, anti-tumor

M2 Anti-inflammatory, pro-tumor

\

’@5’3\
\ w9
0 ?ﬂ\ \
?0
a@ a '< \( Cytotoxic
DIRAS2 STAT3 ¢ eNAMPT+CCR5 * -

Figure 3. Signaling networks driving M2 polarization of tumor-associated macrophages (TAMs) and their pro-
tumorigenic crosstalk with triple-negative breast cancer (TNBC) cells. Cytokines within the TNBC tumor
microenvironment (TME), including IL-4, IL-13, and IL-10, promote macrophage polarization toward an immunosuppressive
M2 phenotype through activation of the JAKI-STAT6 and JAK1-STAT3 signaling axes. Bidirectional crosstalk between M2
TAMs and TNBC cells establishes self-reinforcing, pro-tumorigenic feedback circuits. These include a VEGFA-driven
stemness loop, in which M2 TAM-derived VEGFA enhances TNBC stem-like properties via the VEGFA/NRP-
1/GAPVD1/Wnt/B-catenin pathway and is reciprocally reinforced by tumor-cell VEGFA production; an eNAMPT-CCL2
recruitment loop, in which TNBC-conditioned TAMs secrete extracellular NAMPT (eNAMPT) that activates STAT3 signaling
in TNBC cells through CCRS5, suppresses the tumor suppressor DIRAS2, and induces CCL2 secretion to recruit circulating
monocytes, and an IL-6-mediated polarization loop, in which the oncogene MCT-1 promotes secretion of IL-6 and soluble IL-
6 receptor (sIL-6R), accelerating M2 polarization. Collectively, M2 TAMs suppress antitumor immunity by upregulating
immune checkpoint ligands (PD-L1, B7) and depleting L-arginine via arginase-1 activity, while enhancing TNBC invasion
and stemness. Figure created with BioRender.

The interaction between TNBC cells and TAMs also involves the release of inflammatory cytokines.
The oncogene MCT-1 accelerates the polarization of M2-like macrophages by promoting interleukin-6
(IL-6) secretion from TNBC cells (37). This M2 polarization, in turn, enhances the invasive potential
of TNBC cells. Furthermore, MCT-1 upregulates soluble IL-6 receptor (sIL-6R) levels, and targeting
the IL-6/IL-6R axis effectively suppresses M2 polarization and TNBC stemness (37). The
immunosuppressive nature of TAMs represents a significant barrier to effective
immunotherapy. Mechanistically, TAMs suppress T cell activity by engaging immune checkpoints,
such as PD-L1/PD-1 and CTLA-4/B7, and by metabolically depleting essential amino acids, including
L-arginine, through the expression of Arginase 1, a downstream target of STAT3 signaling (71-73).
Reprogramming TAMs from an immunosuppressive to an immune-activating phenotype has been
shown to markedly enhance the therapeutic effect of immune checkpoint inhibitors in metastatic TNBC
(38).

2.1.2 Cancer-Associated Fibroblasts (CAFs)
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CAFs are another significant stromal cell population in the TNBC TME, contributing significantly to
ECM remodeling, angiogenesis, immune suppression, and therapeutic resistance (49, 51, 74). CAFs
secrete various growth factors, cytokines, and ECM components that create a supportive niche for tumor
cells and influence the behavior of other TME components (49, 51, 75, 76). Distinct signaling pathways
control the activation and tumor-promoting roles of CAFs. Among these, the TGF-B/SMAD axis is a
key regulator, inducing a-SMA expression, a hallmark of CAFs, and stimulating extensive ECM
synthesis and remodeling, which contribute to fibrosis and increased tissue rigidity (77-80). This
stiffness, in turn, can further activate pro-survival signaling pathways, such as PI3K/AKT, in cancer
cells (81).

Epithelial Membrane Protein 1 (EMP1) expression in TNBC cells positively correlates with stromal
scores and CAF infiltration. Depletion of EMP1 in TNBC cells significantly inhibited CAF
infiltration in vitro and in vivo (51). From a mechanistic perspective, the knockdown of IL-6 secretion
from TNBC cells via the NF-kB pathway hinders CAF proliferation and inhibits TNBC progression
and metastasis (51). CAFs also contribute to the physical barrier within the TME and secrete factors,
such as transforming growth factor-beta (TGF-p), that promote fibrosis and immunosuppression (49).
Beyond TGF-B, CAF-derived exosomes and soluble factors can activate oncogenic pathways in TNBC
cells, including the Sonic Hedgehog (SHH) and Hippo/YAP/TAZ pathways, which are critically
involved in promoting cancer cell stemness, proliferation, and resistance to chemotherapy (82, 83).
Furthermore, CAFs contribute to immunosuppression by secreting cytokines, such as CXCL12, which
can exclude T cells from the tumor core, and by expressing enzymes such as indoleamine 2,3-
dioxygenase (IDO), which depletes tryptophan and suppresses T cell function (84-86).

2.1.3 Tumor-Infiltrating Lymphocytes (TILs)

TILs, especially cytotoxic T lymphocytes (CTLs), play a vital role in the anti-tumor immune response.
The presence and density of TILs in TNBC are frequently associated with a superior prognosis and
response to chemotherapy and immunotherapy (15, 28). TNBC is typically characterized by a higher
density of TILs in comparison to other breast cancer subtypes, making it potentially more amenable to
immunotherapy (15, 28, 87). However, the TME can render these TILs dysfunctional or exclude them
from the tumor core, leading to an “immune cold” phenotype despite the presence of lymphocytes (88-
90). The immunomodulatory subtype of TNBC is correlated with the highest expression of adaptive
immune-related gene signatures. It exhibits a “fully inflamed” spatial pattern, making it the most likely
candidate for an ICI response (52). In contrast, other subtypes, such as mesenchymal stem-like and
luminal androgen receptor subtypes, often exhibit an immunosuppressive or “immune cold” phenotype
characterized by stromal and metabolic features, as well as a “margin-restricted” spatial pattern of
immune infiltration (52). Mechanisms of immune suppression in the TNBC TME can impair TIL
function. C-terminal subunit of MUCI1 (MUCI-C), a protein overexpressed in TNBC, links the
activation of the interferon-gamma (IFN-y) pathway to the suppression of the tumor immune
microenvironment. MUC1-C activates the JAKI-STATI1-IRF1 signaling pathway, which induces
immunosuppressive effectors such as IDO1 and COX2, and is related to the exhaustion and dysfunction
of CD8+ T cells (88). This suggests that MUC1-C contributes to the ‘cold’ phenotype and is a promising
target for enhancing ICI efficacy (88).

2.1.4 Myeloid-Derived Suppressor Cells (MDSCs)

MDSCs are a heterogeneous population of immature myeloid cells that expand abnormally during
cancer and other pathological conditions characterized by chronic inflammation. Within the TME and
the peripheral circulation of cancer patients, MDSCs accumulate in large numbers and exert potent
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immunosuppressive effects (91, 92). These cells can be broadly classified into two main subsets:
polymorphonuclear (PMN-MDSCs), which share phenotypic similarities with neutrophils, and
monocytic (M-MDSCs), which resemble monocytes but possess distinct transcriptional and functional
profiles. Functionally, MDSCs employ multiple mechanisms to inhibit antitumor immunity. They
suppress T cell proliferation and cytotoxic activity by producing reactive oxygen species (ROS), nitric
oxide (NO), and arginase-1, which deplete essential amino acids, such as L-arginine and L-cysteine,
from the local environment. MDSCs also promote the expansion and activation of Tregs and impair
dendritic cell antigen presentation, further weakening the adaptive immune response. In addition to their
immunosuppressive roles, MDSCs contribute to tumor progression by secreting proangiogenic factors
such as VEGF and MMP9, enhancing neovascularization and facilitating tumor cell invasion and
metastasis. Through these combined mechanisms, MDSCs play a central role in shaping an
immunosuppressive TME that enables tumor immune evasion and fosters resistance to various forms
of immunotherapy, including immune checkpoint blockade and adoptive T cell transfer (91). Targeting
MDSC recruitment, differentiation, or suppressive function is therefore an emerging therapeutic
strategy to restore antitumor immunity and improve responses to immunotherapy.

2.1.5 Regulatory T cells (Tregs)

Tregs represent a specialized subset of CD4* T lymphocytes that play a pivotal role in maintaining
immune homeostasis and self-tolerance by suppressing excessive or autoreactive immune responses.
The discovery of Tregs and their master transcription factor, FoxP3, a finding recognized by the 2025
Nobel Prize in Physiology or Medicine, highlighted their indispensable role in preventing autoimmunity
and revealed their capacity to constrain antitumor immunity when co-opted by the TME. In the context
of cancer, Tregs are frequently enriched within the TME, where they suppress cytotoxic T lymphocyte
(CTL) activity and dampen the function of natural killer (NK) cells, dendritic cells, and other effector
immune populations (34, 93-95). These suppressive effects are mediated by multiple mechanisms,
including the secretion of inhibitory cytokines (e.g., IL-10, TGF-B, IL-35), the expression of immune
checkpoint molecules (e.g., CTLA-4 and PD-1), and the consumption of essential growth factors such
as IL-2, which deprives effector T cells of proliferative signals. In addition, Tregs can induce metabolic
suppression via adenosine production and modulate antigen-presenting cell (APC) function, further
reinforcing local immunosuppression. Accumulating evidence indicates that elevated Treg infiltration
within tumors correlates with poor clinical outcomes and reduced responsiveness to ICls, particularly
in aggressive subtypes such as TNBC (34, 93).

Advanced transcriptomic analyses, including single-cell RNA sequencing and weighted gene co-
expression network analysis (WGCNA), have identified gene modules associated with Treg infiltration,
demonstrating that high Treg-related scores are predictive of unfavorable prognosis and diminished
response to anti-PD-1 immunotherapy (93). Moreover, recent studies have uncovered intriguing
interactions between the tumor microbiome and Treg-mediated immune modulation. For
instance, Sphingobacterium multivorum colonization in TNBC tumors has been shown to accelerate
tumor progression and impair anti-PD-1 efficacy, a process linked to increased Treg accumulation and
concurrent depletion of CD8" T cell infiltration (34). These findings underscore the multifaceted role
of Tregs as key mediators of immune evasion and resistance to immunotherapy. Consequently,
therapeutic strategies aimed at modulating Treg recruitment, stability, or suppressive activity, such as
selective depletion within the TME or blockade of Treg-associated checkpoints like cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4) and TIGIT, are actively explored to enhance antitumor
immune responses and improve the efficacy of current immunotherapeutic regimens.

2.1.6 Other Immune Cells
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Beyond the major populations, other immune cells also contribute to the complexity of the TNBC TME.
These include dendritic cells (DCs), B cells, neutrophils, and NK cells (13, 35, 96-99). Their roles are
multifaceted and can be either pro- or anti-tumorigenic, depending on their phenotype and the specific
TME context. DCs play a vital role in stimulating adaptive immune responses by presenting tumor
antigens to T cells (35, 100). However, the TME can promote the development of tolerogenic DCs (tol-
DCs) that suppress anti-tumor immunity (35). Tumors and associated immune cells in TNBC exhibit
elevated CD74 expression (35). CD74 expressed on CDll1c cells is critical in regulating tumor
progression by mediating cross-talk between tumor-infiltrating tol-DCs and regulatory B cells (Bregs)
(35). Neutrophils, another myeloid cell type, can also contribute to the immunosuppressive
environment, and strategies to modulate their phenotype are being investigated (91). B cells, including
Bregs, play a pivotal role in modulating the immune response within the TME (35).

2.2 Non-Cellular Components of the TNBC TME

The non-cellular components of the TNBC TME, including the ECM, soluble factors, and metabolic
cues, form the physical and biochemical environment that supports cancer cells and influences cellular
interactions.

2.2.1 Extracellular Matrix (ECM)

ECM is a complex network of proteins, glycoproteins, and proteoglycans that not only provides
structural support to tissues but also actively regulates cellular behavior through biochemical and
mechanical signaling (49, 101). By interacting with cell surface receptors such as integrins and
syndecans, the ECM modulates processes including cell proliferation, migration, differentiation, and
survival. In addition, the ECM can act as a physical and biochemical barrier, limiting immune-cell
infiltration and impeding the penetration of therapeutic agents, including chemotherapeutics and
monoclonal antibodies. In TNBC, the ECM is frequently extensively remodeled, resulting in a stiff,
dense, and highly cross-linked matrix. This desmoplastic transformation is primarily driven by CAFs,
which secrete elevated levels of collagen, fibronectin, laminin, and other ECM components, as well as
enzymes such as lysyl oxidase (LOX) and matrix metalloproteinases (MMPs) that remodel and stiffen
the matrix (49, 102, 103). The altered ECM architecture not only enhances tumor cell invasion and
metastatic potential but also generates elevated interstitial pressure, which can collapse blood vessels
and reduce drug delivery. Furthermore, the stiffened ECM promotes mechanotransduction signaling in
cancer cells, activating pathways such as YAP/TAZ, FAK, and PI3K/AKT, which contribute to tumor
growth, survival, and therapy resistance.

Overall, ECM remodeling in TNBC establishes a tumor-promoting microenvironment that supports
malignant progression, facilitates immune evasion, and reduces the efficacy of conventional and
targeted therapies, highlighting the ECM as both a prognostic indicator and a therapeutic target (49).

2.2.2 Cytokines, Chemokines, and Growth Factors

Soluble factors within the TME, including vascular endothelial growth factor (VEGF), TGF-f, and IL-
6, are secreted by tumor cells, immune cells, and stromal cells, establishing complex communication
networks that regulate tumor progression, angiogenesis, and immune evasion (17, 57, 104, 105). These
molecules mediate dynamic crosstalk among diverse cell populations, including tumor-associated
macrophages, cancer-associated fibroblasts, T cells, and endothelial cells. This interaction shapes tumor
architecture, promotes the survival and proliferation of malignant cells, and modulates the immune
response, either suppressing or enhancing anti-tumor activity. In addition to cytokines, chemokines such
as CXCL8 (IL-8) and CCL2 (MCP-1) play critical roles in recruiting immunosuppressive cells,
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promoting angiogenesis, and facilitating metastatic dissemination in TNBC (32, 57, 88, 106). Other
soluble mediators, including tumor necrosis factor-alpha (TNF-a) and interferon-gamma (IFN-y),
further influence the TME by regulating immune cell activation, polarization, and trafficking, as well
as modulating the expression of adhesion molecules and matrix-remodeling enzymes. Collectively,
these factors create a finely tuned, yet highly adaptable, network that governs tumor biology,
orchestrates the interplay between immune suppression and activation, and contributes to therapeutic
resistance in TNBC.

2.2.3 Metabolic Reprogramming and Hypoxia

Metabolic reprogramming is a defining feature of cancer cells, enabling them to meet the heightened
energy and biosynthetic demands of rapid proliferation and survival under stress conditions. Within the
TME, metabolic crosstalk between cancer cells and surrounding stromal and immune cells plays a
critical role in shaping tumor evolution and modulating immune responses (107). In TNBC, tumor cells
frequently exhibit enhanced glycolytic activity, known as the Warburg effect, even in the presence of
sufficient oxygen (107). This high glycolytic flux not only generates ATP and biosynthetic precursors
required for rapid growth but also leads to lactate accumulation, thereby acidifying the TME. The acidic
and nutrient-depleted TME profoundly affects immune cell function. Effector T cells, NK cells, and
dendritic cells often experience impaired proliferation, cytokine production, and cytotoxic activity in
this environment. In contrast, immunosuppressive populations, such as Tregs and MDSCs, can
proliferate (40). Metabolic competition for glucose, amino acids, and other metabolites between cancer
and immune cells exacerbates immune dysfunction. Beyond glycolysis, TNBC cells also exhibit
alterations in lipid metabolism, glutaminolysis, and oxidative phosphorylation, creating additional
layers of metabolic adaptation that support tumor survival, metastasis, and resistance to therapy.

Thus, the interplay between cancer cell metabolism and the TME establishes a metabolic barrier to
effective antitumor immunity, highlighting potential therapeutic opportunities to target metabolic
pathways in TNBC.

2.2.4 Intratumoral Bacteria

The intratumoral microbiota is now recognized as a key modulator of the TME, with microbial dysbiosis
significantly influencing cancer progression and therapeutic response (34, 108-110). Beyond its role in
tumorigenesis, the microbiome plays a critical role in determining therapeutic efficacy. It can drive
chemoresistance through mechanisms such as Fusobacterium nucleatum-induced protective autophagy
and Gammaproteobacteria-mediated inactivation of gemcitabine (111). Similarly, immunotherapy
outcomes are profoundly shaped by the microbiota, which can either enhance antitumor T-cell activity
or promote immunosuppression through cytokine signaling pathways. The impact of specific bacteria
is often context-dependent. For example, F. nucleatum contributes to tumor development in various
cancers through chronic inflammation, immune evasion, and direct cellular interactions. In colorectal
and esophageal cancers, it induces autophagy-linked chemoresistance, while in breast cancer, it
accelerates progression by reducing T-cell infiltration into the TME (112, 113). Another key player,
enterotoxigenic Bacteroides fragilis, can colonize breast tissue and promote hyperplasia, growth, and
metastasis (114). Notably, anticancer treatments can reciprocally reshape the tumor microbiome.
Chemotherapy administration significantly alters the breast tumor microbiome, enriching for specific
genera, such as Pseudomonas. The increased abundance of Brevundimonas and Staphylococcus in
primary tumors is associated with the development of distant metastases, suggesting a potential link
between therapy-induced microbial shifts and tumor recurrence (115).
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2.2.5 Other Non-Cellular Factors

Various other molecules and pathways contribute to the complexity of the TNBC TME. RNA
methylation modifications play a critical role in mediating cellular subtypes and influencing prognosis
and immune therapy response in TNBC (116). Targeting Long non-coding RNAs, such as MALAT]I,
can alter the immune microenvironment, thereby reducing immunosuppression and increasing T-cell
infiltration (117). Thymidine Kinase-1 expression is associated with high Treg-cell infiltration and poor
prognosis, and may serve as a biomarker and target (93, 118). Lymphocyte activation gene-3, an
immune checkpoint protein, is highly expressed in TILs in TNBC and correlates with the ligand
programmed death-ligand 1 (PD-L1), suggesting its potential as a target for immunotherapy. However,
its prognostic significance requires further investigation (119). CXCL16 and STATI signaling in
myeloid cells are implicated in immune suppression and resistance to chemotherapy-primed ICI
therapy, with STAT1 inhibition showing potential to sensitize TNBC to immune checkpoint blockade
(36).

The intricate interplay between cellular and non-cellular components generates a distinct and
challenging microenvironment in TNBC. TME heterogeneity complicates the development of effective
therapeutic strategies. Tumors may be classified as “hot” (inflamed, high TILs) or “cold” (non-
inflamed, low TILs), yet even “hot” tumors can exhibit dysfunctional or excluded immune cells (88,
89). Addressing this complexity requires targeted interventions that modulate specific TME
components or pathways to shift the balance toward anti-tumor immunity and overcome resistance.

3. Targeting Approaches to Overcome Immune Escape in the Triple-Negative Breast Cancer
Tumor Microenvironment

The efficacy of cancer immunotherapy, particularly ICIs, is profoundly limited by the capacity of
tumors to enact a multitude of immune escape mechanisms. These mechanisms, driven by cellular
components such as TAMs, MDSCs, and Tregs, as well as physical barriers such as fibrotic ECM and
TME metabolic pathways, create an immunosuppressive niche that excludes or inactivates cytotoxic
immune cells. Therefore, the next frontier in TNBC therapy lies in developing strategies that build upon
the foundation of ICIs by not only unleashing anti-tumor immunity but also systematically dismantling
these immune escape pathways. This section reviews therapeutic approaches framed by overcoming
specific immune evasion strategies (Figure 4).

Figure 4. Overview of therapeutic strategies targeting

T the triple-negative breast cancer (TNBC) tumor

Recipent Yy, microenvironment (TME). Approaches aim to overcome

T // tumor-associated immunosuppression by targeting key

W Moo /. PR cellular and molecular components of the TME. Strategies

PD-1/PD-L1 phag / signaling axis . . . . e g g e .

Wr / illustrated include immune checkpoint inhibition (anti-

Radiotherapy CTLA-4 //x Tranilast PD-1 and anti-CTLA-4 antibodies) to restore T-cell

. N " e E activity; therapies targeting tumor-associated

~ i PAD4 inhibit . .

/é:! Approaches e | macrophages (TAMs), myeloid-derived suppressor cells

T.ﬁé%tTi?ngE 1\;1030 (MDSCs), and other immunosuppressive populations for

Chemotherapy S " Neutioph depletion or functional reprogramming; modulation of

. a / . z T~ cancer-associated  fibroblasts ~ (CAFs) and  the

2 | ~ . . .
a N\ e extracellular matrix (ECM) to disrupt tumor-supportive
Apatinib 2 N\ Tecel MUC1- . . o . .

patin A 22\ stromal signaling, inhibition of critical cytokine and

BRCA1/2 N\
Cytokines, \ i i i - _ - -
AP okines.. \_ CD74 chemokine networks, including IL-3, IL-4, IL-10, IL-6,

Booll poon | o oA and CCL2; conventional cytotoxic modalities such as
I3 L4

[ \ . .
Cancer vaccines ccL2 L0 chemotherapy and radiotherapy; and emerging cell-
Nanoparticle | VEGFA IL-6 . . . .
based therapeutic strategies. Figure created with

BioRender.

10



Li et al. Cancer Biome and Targeted Therapy 2026; 1(1):1-31

3.1 Immune Checkpoint Inhibitors (ICIs)

ICIs, especially those targeting programmed cell death protein 1 (PD-1) and PD-L1, have shown
significant promise in TNBC (14, 48, 120-122). Compared to other breast cancer subtypes, TNBC
exhibits superior immunogenicity, characterized by a higher mutation burden and TIL infiltration,
making it a suitable candidate for immunotherapy (13, 15, 28). ICIs function by blocking inhibitory
signals that hinder T cells from targeting cancer cells and restoring or enhancing anti-tumor immunity
(13, 15, 28). The limitations of single-agent ICIs underscore the need for combination strategies.
Simultaneously targeting immune checkpoints and modulating the TME can enhance anti-tumor
immunity and overcome resistance mechanisms. Clinical evidence supports the use of PD-1/PD-L1
inhibitors in TNBC across early and metastatic stages (123, 124). Still, their efficacy is limited to a
subset of patients due to the complex and often immunosuppressive TNBC TME (28, 40, 48). Factors
influencing ICI response include the level and spatial distribution of TILs, PD-L1 expression on tumor
and immune cells, and the presence of immunosuppressive cell populations and pathways within the
TME (28, 52, 88). For example, the immunomodulatory subtype of TNBC, characterized by a “fully
inflamed” TME, appears to be the most responsive to ICIs (52). Conversely, the recruitment and
activation of immunosuppressive cell populations are primary mediators of ICI resistance. For instance,
Tregs directly suppress CTL activity in the TME, while M2-polarized TAMs and MDSCs establish a
localized immunosuppressive milieu through cytokine secretion and metabolic dysregulation, such as
arginase and IDO (65, 85). Furthermore, the CAF-derived dense ECM creates a physical barrier that
impedes T cell infiltration (49, 101). This underscores the need for combinatorial strategies that target
these specific escape mechanisms to overcome ICI resistance. In addition to PD-1/PD-L1, other
immune checkpoints are being investigated as therapeutic targets in TNBC. Lymphocyte activation
gene-3 is another inhibitory receptor expressed on TILs. Its high expression in the TNBC TME, often
associated with PD-L1, suggests that dual blockade may benefit certain patients (119). CTLA-4 is a
well-established immune checkpoint target, and the combination of anti-CTLA-4 with anti-PD-1 has
shown performance in other cancers (49, 107).

3.2 Strategies to Counteract Immune Escape Mechanisms
3.2.1 Reprogramming Myeloid-Driven Immunosuppression

To counteract myeloid-driven immunosuppression, a primary immune escape pathway, several
strategies targeting TAMs and MDSCs are in development. Given their prominent role in promoting
tumor growth, metastasis, and immunosuppression, TAMs are attractive therapeutic targets in TNBC.
Strategies include inhibiting TAM recruitment, depleting TAMs, or reprogramming their phenotype
from pro-tumorigenic M2 to anti-tumorigenic M1 (17,37, 41, 50, 125-127). Targeting the
VEGFA/NRP-1/GAPVDI1 axis, which facilitates crosstalk between TNBC cells and TAMs and
enhances cancer stemness, represents a potential therapeutic strategy (17). Targeting the
eNAMPT/CCRS/CCL2 feedback loop between TAMs and TNBC cells, which facilitates M2
polarization and macrophage recruitment, could disrupt the pro-tumorigenic niche (57). Blocking the
IL-6/IL-6R axis, which drives M2 polarization and cancer stemness, is another promising approach
(37). Using MEK, PPARYy, or HDAC inhibitors to block the MEK/PPARY/RA signaling axis, which
drives M2-type macrophage polarization, represents an encouraging treatment option for modulating
the tumor microenvironment and enhancing anti-tumor immunity (128). Novel approaches employing
targeted delivery systems are being developed that specifically reprogram TAMs to the M1 phenotype
(41, 129, 130). Plant-derived extracellular vesicles (EVs) have also been shown to induce M1
polarization of TAMs, thereby contributing to their antitumor effects (50). A newly developed
biomimetic tumor cell membrane-encapsulated nanodelivery system, assembled from a second near-
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infrared photothermal agent, chemotherapeutic drugs, and PD-L1 inhibitors coated with TNBC cell
membranes, is used to enhance immunotherapy (120). Targeting signaling pathways within TAMs is
also being explored. The PI3K-y inhibitor Eganelisib was shown to reprogram TAMs from an
immunosuppressive to an immune-activating phenotype, improving ICI effectiveness in metastatic
TNBC (38). TAMs promote epithelial-to-mesenchymal transition (EMT) and enhance CSC
characteristics in TNBC by activating the CCL2/AKT/B-catenin signaling pathway (131), offering
novel approaches for diagnosing and treating TNBC. Targeting TAM-specific pathways to influence
the TME provides a promising therapeutic strategy.

Targeting immunosuppressive cells such as MDSCs and Tregs to reduce their numbers or suppress their
function is critical for enhancing anti-tumor immune responses (91, 93, 132). Targeting specific
pathways within these cells, or the factors that recruit them, is a potential strategy. A novel peptidyl
arginine deiminase 4 inhibitor has the potential to reshape the phenotype of neutrophils, a subset of
MDSCs, and reduce MDSC accumulation (91).

3.2.2 Alleviating Treg-Mediated Inhibition

Strategies aimed at limiting Treg recruitment and suppressive activity represent a promising approach
to enhancing antitumor immunity. Tumor cells can actively recruit Tregs through chemokine signaling;
for example, CCL20, secreted by tumor cells under the influence of intra-tumoral bacteria, has been
shown to promote Treg accumulation in the TME, facilitating immune evasion (34). Inhibiting such
chemokine-mediated pathways could therefore reduce Treg-cell infiltration, restore effector T cell
function, and increase tumor responsiveness to immunotherapy. In addition to chemokine-driven
recruitment, specific molecular markers associated with Treg infiltration and poor clinical outcomes,
such as Thymidine Kinase-1 (TK1), have emerged as potential therapeutic targets (93). Modulating
these molecules may disrupt pro-tumorigenic interactions between Tregs and other TME components,
thereby improving antitumor immune responses and patient outcomes. Moreover, the composition of
the TME itself can be therapeutically remodeled to favor effector immune responses. Agents such
as silver nanoparticle conjugates (AgNPs-G) have been shown to selectively reduce Treg populations
while simultaneously promoting the infiltration and activation of cytotoxic T lymphocytes and other
effector immune cells (32). Such strategies highlight the potential of combining TME modulation with
direct targeting of Treg recruitment pathways to achieve stronger and more sustained antitumor
immunity.

Collectively, these strategies underscore the importance of targeting both the molecular drivers of Treg
recruitment and the broader immunosuppressive landscape of the TME as a multifaceted approach to
overcome immune evasion in cancer.

3.2.3 Disrupting the Stromal Barrier

CAFs contribute to ECM remodeling, immune suppression, and drug resistance, making them relevant
therapeutic targets (49, 51, 133). Strategies include inhibiting CAF recruitment or function and
disrupting the CAF-mediated ECM barrier. Targeting EMP1 or disrupting the EMP1/IL-6 signaling
axis could reduce CAF infiltration and impede tumor progression (51). Disrupting the ECM and
reducing fibrosis, processes often driven by CAFs, can enhance drug delivery and improve immune cell
infiltration (49). Inhibiting TGF-p, a key cytokine secreted by CAFs, using Tranilast has been shown
to normalize the TME by reducing ECM components, improving perfusion, and facilitating immune
cell infiltration (49). Targeting CAFs can also disrupt their role in forming cancer stem cell niches,
potentially improving treatment outcomes (134).
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3.2.4 Reversing Metabolic Immune Suppression

Metabolic reprogramming in the TME contributes to immune suppression and resistance (135).
Inhibiting glycolysis in TNBC cells, for example, by targeting GLUT1, can reduce immunosuppressive
factors such as PD-L1 glycosylation and metabolically rewire Tregs, thereby enhancing the ICI
response (107). Targeting GLUT3, which is elevated in metastatic TNBC and linked to glycolysis and
the inflammatory TME, is another potential metabolic target (106). Modulating the NADPH pathway
in tumor cells and the TME can influence redox balance and immune responses, as demonstrated by a
nanomedicine that selectively depletes NADPH in tumor cells to enhance the efficacy of low-dose
radiotherapy and anti-PD-L1 therapy (40). Inhibiting STATI signaling in myeloid cells, which is
associated with an immunosuppressive state linked to chemotherapy priming, can sensitize TNBC to
immune checkpoint blockade (36). It highlights the importance of targeting metabolic/signaling
pathways in immune cells within the TME.

3.2.5 Novel and Emerging Targets

Numerous additional molecules and pathways within the TME are under investigation as therapeutic
targets. Targeting the MUC1-C, which promotes immunosuppression by activating the IFN-y pathway
and depleting TILs, could improve ICI efficacy (88). Inhibiting CD74, which induces the expansion of
tol-DCs and Bregs, offers a strategy to reverse immunosuppression mediated by these cell types (35).
Modulating the AnxA1/FPRI1 axis, which interacts with IL-6 signaling and affects TME components
like fibroblasts, could also influence tumor progression (104). Targeting long non-coding RNAs, such
as Malatl, can alter the immunosuppressive TME and increase T-cell infiltration (117). Inducing
pyroptosis in TNBC cells using HDAC inhibitors can promote immune cell infiltration and enhance
anti-cancer immunity (136). Targeting intratumoral bacteria, for instance, by killing F. nucleatum to
release immunopotentiating pathogen-associated molecular patterns (PAMPs), represents a novel
strategy to warm up ‘cold’ tumors and enhance immunotherapy (137).

3.3 Combination Approaches

Due to the complexity and redundancy of immunosuppressive mechanisms in the TNBC TME, single-
agent therapies frequently demonstrate limited efficacy. Consequently, combination strategies that
concurrently target multiple TME components or pathways, or integrate TME targeting with
conventional therapies, are under active investigation to improve therapeutic efficacy and address
treatment resistance (13, 28, 138, 139).

A cornerstone of this approach is the combination of ICIs with cytotoxic chemotherapy. Chemotherapy
can modulate the TME to enhance ICI activity by inducing immunogenic cell death, releasing tumor
antigens and damage-associated molecular patterns that stimulate anti-tumor immunity (137) (140).
ICIs combined with chemotherapy have shown promising clinical benefit in metastatic and early TNBC
(13, 48, 141, 142). However, chemotherapy can also induce immunosuppressive myeloid cells and alter
the tumor microenvironment (36, 143), underscoring the need for rational combinations and timing.

Beyond chemotherapy, combining ICIs with anti-angiogenic agents represents another promising
avenue. Anti-angiogenic therapy can reprogram the tumor microenvironment, rendering breast cancer
more responsive to PD-1/PD-L1 blockade. Angiogenic factors promote immunosuppression by
inhibiting the function of antigen-presenting and effector cells, which in turn drive angiogenesis,
perpetuating a vicious cycle of immune dysfunction (144). A phase 2 trial combining Apatinib (a
VEGFR?2 inhibitor) with Sintilimab (anti-PD-1) and chemotherapy showed a high pathological
complete response rate in early TNBC (48). The combination of Camrelizumab (anti-PD-1) and
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Apatinib demonstrates good tolerability in advanced TNBC, with promising objective response rates
and progression-free survival, regardless of treatment line or PD-L1 expression status (145).

The combination of ICIs with radiotherapy is also under active investigation. Radiation therapy can
alter the TME by inducing immunogenic cell death and potentially reversing local immunosuppression,
thereby acting as an in situ vaccine (14, 146-149). However, the mechanisms underlying radiation
resistance and immune changes remain under investigation. Combining low-dose radiotherapy with
anti-PD-L1 therapy using a nanomedicine that modulates immunometabolism shows promise for
enhancing anti-PD-L1 efficacy (40).

To enable these sophisticated combinations, nanomedicine and targeted delivery systems provide a
versatile platform. Nanoparticles offer a versatile platform for co-delivering multiple therapeutic agents
directly to the TME, overcoming biological barriers, enhancing specificity, and reducing systemic
toxicity. These systems increase drug solubility, stability, and circulation time, thereby achieving
targeted delivery via the enhanced permeability and retention effect or active targeting of TME
components (32, 40, 49, 50, 120, 138, 139, 150-152). Furthermore, nanoparticles can be engineered to
be responsive to distinct properties of the TME, such as acidic pH, oxygen deprivation, or heightened
enzyme activity, enabling controlled drug release (89, 107, 150).

The combination of ICIs with PARP inhibitors (PARPi) remains an active area of investigation.
Preclinical and early clinical data continue to suggest that PARPi can enhance antitumor immunity by
increasing PD-L1 expression, creating a rationale for this strategy. Preclinical studies reveal that PARPi
exhibit dual immunomodulatory effects: while they can improve tumor immunogenicity by increasing
neoantigen exposure and activating STING signaling, they may also upregulate compensatory immune
checkpoints, such as PD-L1. However, combining PARPi with PD-1/PD-L1 blockade synergistically
enhances T-cell-mediated tumor killing in vivo by overcoming this adaptive resistance (153-155). In a
single-arm, open-label, phase 2 trial of niraparib combined with pembrolizumab for advanced or
metastatic triple-negative breast cancer, the combination demonstrated a tolerable safety profile and
promising antitumor activity, irrespective of BRCA mutation status (156). In BRCA-mutant patients,
the MEDIOLA trial (Olaparib plus Durvalumab) achieved a disease control rate of 80% at 12 weeks
and 50% at 28 weeks (157). These results confirm the clinical potential of this strategy. However, the
phase III KEYLYNK-009 trial (2024), which evaluated niraparib plus pembrolizumab versus
chemotherapy in unselected metastatic TNBC, did not meet its primary endpoints of progression-free
survival and overall survival in the overall population. Nonetheless, improvements in both progression-
free survival and overall survival were observed in patients with tumor BRCA mutations treated with
pembrolizumab plus Olaparib, compared to those receiving pembrolizumab plus chemotherapy,
suggesting a potential role for this combination as a maintenance strategy in this biomarker-defined
subgroup (158).

Furthermore, other emerging multimodal approaches include combining ICIs with cancer vaccines or
NK cell therapy (13, 159-163). Combining therapies that induce different forms of immunogenic cell
death, such as immuno-chemodynamic therapy enhanced by targeting intratumoral bacteria, can
synergistically activate anti-tumor immunity (137). Advanced preclinical models, such as 3D TME-on-
a-chip and bioprinted tumor-stroma systems, are revolutionizing our approach to TNBC. They not only
elucidate critical tumor-stromal-immune crosstalk but also serve as powerful platforms for evaluating
novel therapies and combinations, particularly against therapy-resistant CSCs within their complex
microenvironment (164, 165). Strategies that combine targeting CSCs with modulating the TME are
also promising, as the TME provides a niche for CSCs and influences their behavior (166-169).
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The diverse range of targeting approaches reflects the TNBC TME's multifaceted nature. Strategies that
aim to reprogram or disrupt key TME components, either alone or in combination with ICIs or
conventional therapies, have significant potential to improve response rates and overcome treatment
resistance. The development of targeted delivery systems, particularly TME-responsive nanoparticles,
offers exciting opportunities to enhance the specificity and efficacy of these novel therapies.

Discussion

Despite advances in understanding the TNBC TME and in developing TME-targeted therapies,
significant challenges persist. Different TNBC subtypes exhibit distinct TME profiles and varying
responsiveness to therapies, emphasizing the need for personalized treatment approaches (52).
Mechanisms of resistance to TME-targeted therapies, including ICIs, are complex and involve multiple
redundant pathways and cell populations (15, 28, 54, 170, 171). The plasticity of TME cells, or the
dynamic interplay among different immunosuppressive components, can lead to treatment escape
(17, 34, 38, 41, 51, 137). Furthermore, the physical barrier imposed by the dense ECM can limit drug
penetration and immune cell infiltration, contributing to resistance (101). Metabolic adaptations and
hypoxia within the TME also create unfavorable conditions for anti-tumor immunity and can promote
resistance to various therapies, including radiation (14, 106, 172-174).

Identifying reliable predictive biomarkers is paramount for stratifying patients and selecting the most
appropriate TME-targeted therapies or combinations. While PD-L1 expression is employed as a
biomarker for ICI therapy, its predictive reliability is limited, and better markers are needed
(15, 28, 175-177). Biomarkers reflecting the overall immune landscape, specific immunosuppressive
pathways, or the presence of specific TME components are under investigation (15,28, 34-
36,51, 88,93, 119, 178, 179). RNA methylation regulators and oxeiptosis scores are also being
explored for their prognostic and predictive potential (48, 180). The application of multi-omics
approaches is highly significant for identifying biomarkers that reveal molecular characteristics and key
pathways driving TNBC progression and influencing the TME (181, 182).

Future directions in targeting the TNBC TME involve several key areas. Further dissecting the intricate
crosstalk between TME components and cancer cells is essential for identifying novel targets and
understanding mechanisms of resistance. Developing strategies to reprogram immunosuppressive cells
towards an anti-tumor phenotype effectively remains a priority. Targeting the ECM to improve drug
delivery and immune infiltration is also crucial. Modulating the TME’s metabolic landscape to favor
anti-tumor immunity is another promising avenue. The emerging role of the intratumoral microbiome
suggests the development of novel therapeutic strategies. Combination therapies are likely to be the
cornerstone of future TNBC treatment. Rational design of combinations requires a thorough
understanding of how different therapies affect the TME and interact with one another.

In conclusion, the TME is a pivotal determinant of TNBC progression, immune evasion, and therapeutic
resistance. Targeting the TME, particularly through strategies that enhance anti-tumor immunity and
overcome immunosuppression, offers promising avenues for improving TNBC treatment outcomes.
While immune checkpoint inhibitors have demonstrated significant potential, their efficacy is often
limited by the complex TME. Future efforts should focus on developing rational combination therapies
that simultaneously target multiple pro-tumorigenic and immunosuppressive components of the TME.
Guided by robust predictive biomarkers, more effective and personalized treatments for TNBC patients
can be developed.
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