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Abstract 
 

Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous subtype of breast cancer with 
high recurrence and early metastasis. Unlike hormone receptor-positive or HER2-positive cancers, 
TNBC lacks targeted therapies, and standard chemotherapy often yields limited and transient responses, 
making treatment challenging. The tumor microenvironment (TME) plays a central role in TNBC 
progression, immune evasion, and therapy resistance. It comprises multiple cellular components, tumor-
associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), tumor-infiltrating lymphocytes 
(TILs), and myeloid-derived suppressor cells (MDSCs), as well as structural and signaling elements 
such as the extracellular matrix (ECM), growth factors, and cytokines. Interactions among these 
components create an immunosuppressive, pro-tumorigenic milieu that supports cancer cell survival, 
invasion, and metastasis. Targeting the TME has emerged as a promising therapeutic strategy. 
Immunotherapies, particularly immune checkpoint inhibitors (ICIs), can restore antitumor immunity by 
reversing T cell exhaustion and mitigating immune suppression. Response rates remain variable, 
prompting exploration of combination approaches pairing ICIs with chemotherapy, radiotherapy, or 
TME-modulating agents to enhance efficacy. Direct targeting of TME components, including CAFs, 
TAMs, MDSCs, and ECM remodeling enzymes, is also being developed to disrupt the supportive tumor 
niche and enhance drug delivery. This review provides a comprehensive overview of the TNBC TME, 
emphasizing its role in tumor progression and therapy resistance, and summarizes current and emerging 
strategies to target the TME. By clarifying complex cellular and molecular interactions, these 
approaches aim to sensitize tumors to therapy, prevent metastasis, and support the development of more 
effective, personalized treatments for TNBC. 
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1. Introduction 

Global breast cancer incidence rates are increasing, accounting for 31% of female cancers, and the 
disease burden is projected to rise by 40% by 2040 (1, 2). Triple-negative breast cancer (TNBC) lacks 
expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 
receptor 2 (HER2) (3, 4). TNBC is the most aggressive breast cancer subtype, representing 10-15% of 
all breast cancer cases globally (5-8). TNBC is classified into four molecular subtypes under the 
TNBCtype-4 scheme: basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal (M), and luminal androgen 
receptor (LAR) (9). These subtypes have distinct characteristics and different responses to therapy and 
prognosis (9-11) (Figure 1). Approximately 25% of TNBC patients have germline BRCA1/2 mutations 
(12). The absence of conventional therapeutic targets renders TNBC difficult to manage, with treatment 
primarily dependent on traditional chemotherapy that often yields limited efficacy. Consequently, 
TNBC is associated with high recurrence and metastasis rates, resulting in poor patient prognosis (13-
18). For advanced-stage TNBC, the median survival remains less than 24 months (19-22).   

Figure 1. Components of the triple-negative breast cancer (TNBC) tumor microenvironment (TME). This schematic 
depicts the four main TNBC subtypes under the TNBCtype-4 classification, highlighting their biological pathways and 
corresponding therapies. Basal-Like 1 (BL1, ~35%) exhibits increased cell-cycle and DNA-damage response, suggesting 
sensitivity to platinum chemotherapy and other DNA-damaging agents. Basal-Like 2 (BL2, ~22%) exhibits active growth factor 
signaling, making it a potential target for mTOR inhibitors. The Mesenchymal (M, ~27%) subtype drives epithelial-to-
mesenchymal transition (EMT); therapies may target EMT or cancer stem cells (CSCs). Luminal Androgen Receptor (LAR, 
~16%) is linked to androgen receptor (AR) signaling, suggesting potential for anti-androgen therapy. BL1: basal-like 1, BL2: 
basal-like 2, M: mesenchymal, LAR: luminal androgen receptor, EMT: epithelial-to-mesenchymal transition, CSCs: cancer 
stem cells. 

TNBC’s heterogeneity spans clinical, histopathological, and molecular features, marked by high 
genomic instability and mutation rates (13, 23, 24). TNBC has a greater tumor mutational burden (25), 
which increases neoantigen production and the chances of immune detection (26). Yet, immunotherapy 
for TNBC is limited by low immunogenicity and an immunosuppressive tumor microenvironment 
(TME) (27). These features increase both neoantigen generation and immunogenicity, suggesting 
potential for immunotherapy (28, 29). However, complexity makes effective treatment strategies 
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challenging. The TME heavily influences TNBC’s progression, immune evasion, and treatment 
resistance (14, 15). It is a complex, dynamic environment of diverse cellular and non-cellular 
components that interact closely with tumor cells (17, 30, 31). The TME contains immune cells like 
tumor-associated macrophages (TAMs), regulatory T cells (Tregs), tumor-infiltrating lymphocytes 
(TILs), and myeloid-derived suppressor cells (MDSCs), together with stromal cells, cancer-associated 
fibroblasts (CAFs), endothelial cells, extracellular matrix (ECM), and factors like cytokines, 
chemokines, and growth factors (32-39) (Figure 2). TNBC TME is especially heterogeneous, with an 
immunosuppressive profile that promotes tumor growth and treatment resistance (34, 40, 41).  

Figure 2. Components of the triple-negative breast cancer (TNBC) tumor microenvironment (TME). 
The TNBC TME is a heterogeneous ecosystem composed of cellular and non-cellular elements that collectively promote tumor 
growth, immune evasion, and therapeutic resistance. Key cellular components include tumor-associated macrophages, 
cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), T cells, B cells, dendritic cells (DCs), 
natural killer (NK) cells, and neutrophils. Non-cellular components include the extracellular matrix (ECM) and soluble factors 
such as cytokines, chemokines, and growth factors, which together shape an immunosuppressive and tumor-supportive milieu. 
TNBC, triple-negative breast cancer; TME, tumor microenvironment; CAF, cancer-associated fibroblast; ECM, extracellular 
matrix; MDSC, myeloid-derived suppressor cell; DC, dendritic cell; NK, natural killer cell. Figure created with BioRender. 

Given the limited conventional treatments and the TME’s central role, research now focuses on 
targeting the TME to enhance anti-tumor immunity and overcome resistance (3, 15). Immunotherapies, 
especially immune checkpoint inhibitors (ICIs), are promising for restoring anti-tumor immune 
responses and are changing care in early and metastatic TNBC (15, 28, 42). However, not all patients 
respond to ICIs (response rate 5–23%) (43-47). Resistance remains a significant challenge; therefore, a 
better understanding of the TME and the development of combination approaches are crucial for 
improving therapy. New strategies target TME components such as TAMs, CAFs, and MDSCs, or 
target the ECM, inhibit angiogenesis, or alter tumor metabolism, often in combination with 
immunotherapy or chemotherapy (38, 48-51).  

This review utilizes the TNBCtype-4 molecular subtyping system, which categorizes TNBC into four 
tumor-intrinsic subtypes: basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal (M), and luminal 
androgen receptor (LAR). This classification represents a refinement of the earlier TNBC-type system. 
The rationale for this consolidation is supported by histopathological analyses, which revealed that the 
transcriptional profiles of the previously defined immunomodulatory (IM) and mesenchymal stem-like 
(MSL) subtypes were not derived from the tumor epithelium (9). Instead, the IM signature was 
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predominantly attributable to infiltrating lymphoid cells, while the MSL signature originated from 
tumor-associated stromal cells. Consequently, the TNBC-type-4 system provides a more accurate 
representation of tumor cell-specific biology, making it a robust framework for analyzing how intrinsic 
cancer cell pathways dictate interactions with the surrounding tumor microenvironment and influence 
therapeutic vulnerabilities.  

2. Understanding the Tumor Microenvironment in Triple-Negative Breast Cancer 

The TME in TNBC is highly complex and heterogeneous, exerting a significant influence on tumor 
behavior and therapeutic response (13, 14, 52, 53). Compared with hormone receptor-positive or 
HER2-positive breast cancers, TNBC shows more extensive interactions with its microenvironment, 
characterized by abundant immune cell infiltration and a dynamic stromal compartment (15, 28, 54). 
This heterogeneity extends beyond genetic and molecular differences within tumor cells to include the 
diverse composition and spatial organization of TME components (13, 52, 55, 56). A comprehensive 
understanding of this complexity is essential for the development of effective targeted therapies. 

2.1 Cellular Components of the TNBC TME 

The TNBC TME cellular landscape comprises a range of immune and stromal cell populations that 
interact extensively with cancer cells. These interactions can either promote or inhibit tumor growth, 
significantly affecting therapeutic outcomes. 

2.1.1 Tumor-Associated Macrophages (TAMs) 

 TAMs are among the most abundant immune cell populations in the TNBC TME and play critical, 
often dual, roles in tumor progression (17, 37, 41, 57, 58). Macrophages are highly plastic and can 
polarize into different functional phenotypes, broadly classified as M1 (pro-inflammatory, anti-tumor) 
and M2 (anti-inflammatory, pro-tumor) (17, 37, 41, 59, 60). In the TNBC TME, TAMs are frequently 
skewed towards the M2 phenotype, promoting tumor growth, angiogenesis, metastasis, and 
immunosuppression (57, 61). This polarization triggers signaling pathways that further reinforce the 
same polarized state. For example, cytokines such as IL-4 and IL-13 activate the JAK1/STAT6 pathway 
(62, 63), while IL-10 activates JAK1/STAT3 signaling (64), leading to the transcriptional upregulation 
of typical M2 markers, including Arginase 1, CD206, and immunosuppressive factors (65). The 
PI3K/AKT pathway is also a central node that integrates various signals to promote M2 survival and 
function (66). Studies highlight the intricate crosstalk between TNBC cells and TAMs. For instance, 
M2-type TAMs promote cancer stemness in TNBC cells by secreting vascular endothelial growth factor 
A (VEGFA) (17). Conversely, TNBC cells educated by TAMs exhibit elevated VEGFA, which further 
regulates macrophage polarization, forming a positive feedback loop that strengthens the cancer stem 
cell (CSC) phenotype via the VEGFA/NRP-1/GAPVD1/Wnt/β-catenin pathway (17).  

This study underscores the pro-tumorigenic role of TAMs and the importance of this specific signaling 
axis in promoting stemness and potentially contributing to an immunosuppressive TME (Figure 3). The 
persistent activation of these intracellular networks, such as STAT3 and β-catenin, not only maintains 
the M2 phenotype but also establishes a feed-forward loop that reinforces the immunosuppressive TME 
(65, 67).The microenvironment of tumor occurrence is particularly rich in CD163+ macrophages, 
which are associated with a poor prognosis (68-70). An eNAMPT/Ac-STAT3/DIRAS2 axis was 
identified in TAM-TNBC cell crosstalk, and CD163+ M2-like TAMs are associated with an 
unfavorable prognosis in TNBC (57). TNBC cell-conditioned medium induces M2 polarization, and 
these TAMs secrete eNAMPT, which activates STAT3 in TNBC cells via CCR5, downregulates the 
cancer suppressor DIRAS2, and increases CCL2 secretion. This creates a feedback loop in which CCL2 
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recruits more macrophages, thereby perpetuating the pro-tumorigenic environment (57). The eNAMPT-
mediated activation of STAT3 is a prime example of a core intracellular signaling network driving 
tumor progression (57). The polarization of TAMs and the related signaling axes is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Signaling networks driving M2 polarization of tumor-associated macrophages (TAMs) and their pro-
tumorigenic crosstalk with triple-negative breast cancer (TNBC) cells. Cytokines within the TNBC tumor 
microenvironment (TME), including IL-4, IL-13, and IL-10, promote macrophage polarization toward an immunosuppressive 
M2 phenotype through activation of the JAK1–STAT6 and JAK1–STAT3 signaling axes. Bidirectional crosstalk between M2 
TAMs and TNBC cells establishes self-reinforcing, pro-tumorigenic feedback circuits. These include a VEGFA-driven 
stemness loop, in which M2 TAM-derived VEGFA enhances TNBC stem-like properties via the VEGFA/NRP-
1/GAPVD1/Wnt/β-catenin pathway and is reciprocally reinforced by tumor-cell VEGFA production; an eNAMPT–CCL2 
recruitment loop, in which TNBC-conditioned TAMs secrete extracellular NAMPT (eNAMPT) that activates STAT3 signaling 
in TNBC cells through CCR5, suppresses the tumor suppressor DIRAS2, and induces CCL2 secretion to recruit circulating 
monocytes; and an IL-6-mediated polarization loop, in which the oncogene MCT-1 promotes secretion of IL-6 and soluble IL-
6 receptor (sIL-6R), accelerating M2 polarization. Collectively, M2 TAMs suppress antitumor immunity by upregulating 
immune checkpoint ligands (PD-L1, B7) and depleting L-arginine via arginase-1 activity, while enhancing TNBC invasion 
and stemness. Figure created with BioRender. 

The interaction between TNBC cells and TAMs also involves the release of inflammatory cytokines. 
The oncogene MCT-1 accelerates the polarization of M2-like macrophages by promoting interleukin-6 
(IL-6) secretion from TNBC cells (37). This M2 polarization, in turn, enhances the invasive potential 
of TNBC cells. Furthermore, MCT-1 upregulates soluble IL-6 receptor (sIL-6R) levels, and targeting 
the IL-6/IL-6R axis effectively suppresses M2 polarization and TNBC stemness (37). The 
immunosuppressive nature of TAMs represents a significant barrier to effective 
immunotherapy. Mechanistically, TAMs suppress T cell activity by engaging immune checkpoints, 
such as PD-L1/PD-1 and CTLA-4/B7, and by metabolically depleting essential amino acids, including 
L-arginine, through the expression of Arginase 1, a downstream target of STAT3 signaling (71-73).
 Reprogramming TAMs from an immunosuppressive to an immune-activating phenotype has been 
shown to markedly enhance the therapeutic effect of immune checkpoint inhibitors in metastatic TNBC 
(38). 

2.1.2 Cancer-Associated Fibroblasts (CAFs) 
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CAFs are another significant stromal cell population in the TNBC TME, contributing significantly to 
ECM remodeling, angiogenesis, immune suppression, and therapeutic resistance (49, 51, 74). CAFs 
secrete various growth factors, cytokines, and ECM components that create a supportive niche for tumor 
cells and influence the behavior of other TME components (49, 51, 75, 76).  Distinct signaling pathways 
control the activation and tumor-promoting roles of CAFs. Among these, the TGF-β/SMAD axis is a 
key regulator, inducing α-SMA expression, a hallmark of CAFs, and stimulating extensive ECM 
synthesis and remodeling, which contribute to fibrosis and increased tissue rigidity (77-80). This 
stiffness, in turn, can further activate pro-survival signaling pathways, such as PI3K/AKT, in cancer 
cells (81). 

Epithelial Membrane Protein 1 (EMP1) expression in TNBC cells positively correlates with stromal 
scores and CAF infiltration. Depletion of EMP1 in TNBC cells significantly inhibited CAF 
infiltration in vitro and in vivo (51). From a mechanistic perspective, the knockdown of IL-6 secretion 
from TNBC cells via the NF-κB pathway hinders CAF proliferation and inhibits TNBC progression 
and metastasis (51). CAFs also contribute to the physical barrier within the TME and secrete factors, 
such as transforming growth factor-beta (TGF-β), that promote fibrosis and immunosuppression (49). 
Beyond TGF-β, CAF-derived exosomes and soluble factors can activate oncogenic pathways in TNBC 
cells, including the Sonic Hedgehog (SHH) and Hippo/YAP/TAZ pathways, which are critically 
involved in promoting cancer cell stemness, proliferation, and resistance to chemotherapy (82, 83). 
Furthermore, CAFs contribute to immunosuppression by secreting cytokines, such as CXCL12, which 
can exclude T cells from the tumor core, and by expressing enzymes such as indoleamine 2,3-
dioxygenase (IDO), which depletes tryptophan and suppresses T cell function (84-86). 

2.1.3 Tumor-Infiltrating Lymphocytes (TILs) 

TILs, especially cytotoxic T lymphocytes (CTLs), play a vital role in the anti-tumor immune response. 
The presence and density of TILs in TNBC are frequently associated with a superior prognosis and 
response to chemotherapy and immunotherapy (15, 28). TNBC is typically characterized by a higher 
density of TILs in comparison to other breast cancer subtypes, making it potentially more amenable to 
immunotherapy (15, 28, 87). However, the TME can render these TILs dysfunctional or exclude them 
from the tumor core, leading to an “immune cold” phenotype despite the presence of lymphocytes (88-
90). The immunomodulatory subtype of TNBC is correlated with the highest expression of adaptive 
immune-related gene signatures. It exhibits a “fully inflamed” spatial pattern, making it the most likely 
candidate for an ICI response (52). In contrast, other subtypes, such as mesenchymal stem-like and 
luminal androgen receptor subtypes, often exhibit an immunosuppressive or “immune cold” phenotype 
characterized by stromal and metabolic features, as well as a “margin-restricted” spatial pattern of 
immune infiltration (52). Mechanisms of immune suppression in the TNBC TME can impair TIL 
function. C-terminal subunit of MUC1 (MUC1-C), a protein overexpressed in TNBC, links the 
activation of the interferon-gamma (IFN-γ) pathway to the suppression of the tumor immune 
microenvironment. MUC1-C activates the JAK1-STAT1-IRF1 signaling pathway, which induces 
immunosuppressive effectors such as IDO1 and COX2, and is related to the exhaustion and dysfunction 
of CD8+ T cells (88). This suggests that MUC1-C contributes to the ‘cold’ phenotype and is a promising 
target for enhancing ICI efficacy (88). 

2.1.4 Myeloid-Derived Suppressor Cells (MDSCs) 

MDSCs are a heterogeneous population of immature myeloid cells that expand abnormally during 
cancer and other pathological conditions characterized by chronic inflammation. Within the TME and 
the peripheral circulation of cancer patients, MDSCs accumulate in large numbers and exert potent 
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immunosuppressive effects (91, 92). These cells can be broadly classified into two main subsets: 
polymorphonuclear (PMN-MDSCs), which share phenotypic similarities with neutrophils, and 
monocytic (M-MDSCs), which resemble monocytes but possess distinct transcriptional and functional 
profiles. Functionally, MDSCs employ multiple mechanisms to inhibit antitumor immunity. They 
suppress T cell proliferation and cytotoxic activity by producing reactive oxygen species (ROS), nitric 
oxide (NO), and arginase-1, which deplete essential amino acids, such as L-arginine and L-cysteine, 
from the local environment. MDSCs also promote the expansion and activation of Tregs and impair 
dendritic cell antigen presentation, further weakening the adaptive immune response. In addition to their 
immunosuppressive roles, MDSCs contribute to tumor progression by secreting proangiogenic factors 
such as VEGF and MMP9, enhancing neovascularization and facilitating tumor cell invasion and 
metastasis. Through these combined mechanisms, MDSCs play a central role in shaping an 
immunosuppressive TME that enables tumor immune evasion and fosters resistance to various forms 
of immunotherapy, including immune checkpoint blockade and adoptive T cell transfer (91). Targeting 
MDSC recruitment, differentiation, or suppressive function is therefore an emerging therapeutic 
strategy to restore antitumor immunity and improve responses to immunotherapy. 

2.1.5 Regulatory T cells (Tregs) 

Tregs represent a specialized subset of CD4⁺ T lymphocytes that play a pivotal role in maintaining 
immune homeostasis and self-tolerance by suppressing excessive or autoreactive immune responses. 
The discovery of Tregs and their master transcription factor, FoxP3, a finding recognized by the 2025 
Nobel Prize in Physiology or Medicine, highlighted their indispensable role in preventing autoimmunity 
and revealed their capacity to constrain antitumor immunity when co-opted by the TME. In the context 
of cancer, Tregs are frequently enriched within the TME, where they suppress cytotoxic T lymphocyte 
(CTL) activity and dampen the function of natural killer (NK) cells, dendritic cells, and other effector 
immune populations (34, 93-95). These suppressive effects are mediated by multiple mechanisms, 
including the secretion of inhibitory cytokines (e.g., IL-10, TGF-β, IL-35), the expression of immune 
checkpoint molecules (e.g., CTLA-4 and PD-1), and the consumption of essential growth factors such 
as IL-2, which deprives effector T cells of proliferative signals. In addition, Tregs can induce metabolic 
suppression via adenosine production and modulate antigen-presenting cell (APC) function, further 
reinforcing local immunosuppression. Accumulating evidence indicates that elevated Treg infiltration 
within tumors correlates with poor clinical outcomes and reduced responsiveness to ICIs, particularly 
in aggressive subtypes such as TNBC (34, 93).  

Advanced transcriptomic analyses, including single-cell RNA sequencing and weighted gene co-
expression network analysis (WGCNA), have identified gene modules associated with Treg infiltration, 
demonstrating that high Treg-related scores are predictive of unfavorable prognosis and diminished 
response to anti-PD-1 immunotherapy (93). Moreover, recent studies have uncovered intriguing 
interactions between the tumor microbiome and Treg-mediated immune modulation. For 
instance, Sphingobacterium multivorum colonization in TNBC tumors has been shown to accelerate 
tumor progression and impair anti-PD-1 efficacy, a process linked to increased Treg accumulation and 
concurrent depletion of CD8⁺ T cell infiltration (34). These findings underscore the multifaceted role 
of Tregs as key mediators of immune evasion and resistance to immunotherapy. Consequently, 
therapeutic strategies aimed at modulating Treg recruitment, stability, or suppressive activity, such as 
selective depletion within the TME or blockade of Treg-associated checkpoints like cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4) and TIGIT, are actively explored to enhance antitumor 
immune responses and improve the efficacy of current immunotherapeutic regimens. 

2.1.6 Other Immune Cells 
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Beyond the major populations, other immune cells also contribute to the complexity of the TNBC TME. 
These include dendritic cells (DCs), B cells, neutrophils, and NK cells (13, 35, 96-99). Their roles are 
multifaceted and can be either pro- or anti-tumorigenic, depending on their phenotype and the specific 
TME context. DCs play a vital role in stimulating adaptive immune responses by presenting tumor 
antigens to T cells (35, 100). However, the TME can promote the development of tolerogenic DCs (tol-
DCs) that suppress anti-tumor immunity (35). Tumors and associated immune cells in TNBC exhibit 
elevated CD74 expression (35). CD74 expressed on CD11c cells is critical in regulating tumor 
progression by mediating cross-talk between tumor-infiltrating tol-DCs and regulatory B cells (Bregs) 
(35). Neutrophils, another myeloid cell type, can also contribute to the immunosuppressive 
environment, and strategies to modulate their phenotype are being investigated (91). B cells, including 
Bregs, play a pivotal role in modulating the immune response within the TME (35). 

2.2 Non-Cellular Components of the TNBC TME 

The non-cellular components of the TNBC TME, including the ECM, soluble factors, and metabolic 
cues, form the physical and biochemical environment that supports cancer cells and influences cellular 
interactions. 

2.2.1 Extracellular Matrix (ECM) 

ECM is a complex network of proteins, glycoproteins, and proteoglycans that not only provides 
structural support to tissues but also actively regulates cellular behavior through biochemical and 
mechanical signaling (49, 101). By interacting with cell surface receptors such as integrins and 
syndecans, the ECM modulates processes including cell proliferation, migration, differentiation, and 
survival. In addition, the ECM can act as a physical and biochemical barrier, limiting immune-cell 
infiltration and impeding the penetration of therapeutic agents, including chemotherapeutics and 
monoclonal antibodies. In TNBC, the ECM is frequently extensively remodeled, resulting in a stiff, 
dense, and highly cross-linked matrix. This desmoplastic transformation is primarily driven by CAFs, 
which secrete elevated levels of collagen, fibronectin, laminin, and other ECM components, as well as 
enzymes such as lysyl oxidase (LOX) and matrix metalloproteinases (MMPs) that remodel and stiffen 
the matrix (49, 102, 103). The altered ECM architecture not only enhances tumor cell invasion and 
metastatic potential but also generates elevated interstitial pressure, which can collapse blood vessels 
and reduce drug delivery. Furthermore, the stiffened ECM promotes mechanotransduction signaling in 
cancer cells, activating pathways such as YAP/TAZ, FAK, and PI3K/AKT, which contribute to tumor 
growth, survival, and therapy resistance. 

Overall, ECM remodeling in TNBC establishes a tumor-promoting microenvironment that supports 
malignant progression, facilitates immune evasion, and reduces the efficacy of conventional and 
targeted therapies, highlighting the ECM as both a prognostic indicator and a therapeutic target (49). 

2.2.2 Cytokines, Chemokines, and Growth Factors 

Soluble factors within the TME, including vascular endothelial growth factor (VEGF), TGF-β, and IL-
6, are secreted by tumor cells, immune cells, and stromal cells, establishing complex communication 
networks that regulate tumor progression, angiogenesis, and immune evasion (17, 57, 104, 105). These 
molecules mediate dynamic crosstalk among diverse cell populations, including tumor-associated 
macrophages, cancer-associated fibroblasts, T cells, and endothelial cells. This interaction shapes tumor 
architecture, promotes the survival and proliferation of malignant cells, and modulates the immune 
response, either suppressing or enhancing anti-tumor activity. In addition to cytokines, chemokines such 
as CXCL8 (IL-8) and CCL2 (MCP-1) play critical roles in recruiting immunosuppressive cells, 
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promoting angiogenesis, and facilitating metastatic dissemination in TNBC (32, 57, 88, 106). Other 
soluble mediators, including tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), 
further influence the TME by regulating immune cell activation, polarization, and trafficking, as well 
as modulating the expression of adhesion molecules and matrix-remodeling enzymes. Collectively, 
these factors create a finely tuned, yet highly adaptable, network that governs tumor biology, 
orchestrates the interplay between immune suppression and activation, and contributes to therapeutic 
resistance in TNBC. 

2.2.3 Metabolic Reprogramming and Hypoxia 

Metabolic reprogramming is a defining feature of cancer cells, enabling them to meet the heightened 
energy and biosynthetic demands of rapid proliferation and survival under stress conditions. Within the 
TME, metabolic crosstalk between cancer cells and surrounding stromal and immune cells plays a 
critical role in shaping tumor evolution and modulating immune responses (107). In TNBC, tumor cells 
frequently exhibit enhanced glycolytic activity, known as the Warburg effect, even in the presence of 
sufficient oxygen (107). This high glycolytic flux not only generates ATP and biosynthetic precursors 
required for rapid growth but also leads to lactate accumulation, thereby acidifying the TME. The acidic 
and nutrient-depleted TME profoundly affects immune cell function. Effector T cells, NK cells, and 
dendritic cells often experience impaired proliferation, cytokine production, and cytotoxic activity in 
this environment. In contrast, immunosuppressive populations, such as Tregs and MDSCs, can 
proliferate (40). Metabolic competition for glucose, amino acids, and other metabolites between cancer 
and immune cells exacerbates immune dysfunction. Beyond glycolysis, TNBC cells also exhibit 
alterations in lipid metabolism, glutaminolysis, and oxidative phosphorylation, creating additional 
layers of metabolic adaptation that support tumor survival, metastasis, and resistance to therapy. 

Thus, the interplay between cancer cell metabolism and the TME establishes a metabolic barrier to 
effective antitumor immunity, highlighting potential therapeutic opportunities to target metabolic 
pathways in TNBC. 

2.2.4 Intratumoral Bacteria 

The intratumoral microbiota is now recognized as a key modulator of the TME, with microbial dysbiosis 
significantly influencing cancer progression and therapeutic response (34, 108-110). Beyond its role in 
tumorigenesis, the microbiome plays a critical role in determining therapeutic efficacy. It can drive 
chemoresistance through mechanisms such as Fusobacterium nucleatum-induced protective autophagy 
and Gammaproteobacteria-mediated inactivation of gemcitabine (111). Similarly, immunotherapy 
outcomes are profoundly shaped by the microbiota, which can either enhance antitumor T-cell activity 
or promote immunosuppression through cytokine signaling pathways. The impact of specific bacteria 
is often context-dependent. For example, F. nucleatum contributes to tumor development in various 
cancers through chronic inflammation, immune evasion, and direct cellular interactions. In colorectal 
and esophageal cancers, it induces autophagy-linked chemoresistance, while in breast cancer, it 
accelerates progression by reducing T-cell infiltration into the TME (112, 113). Another key player, 
enterotoxigenic Bacteroides fragilis, can colonize breast tissue and promote hyperplasia, growth, and 
metastasis (114). Notably, anticancer treatments can reciprocally reshape the tumor microbiome. 
Chemotherapy administration significantly alters the breast tumor microbiome, enriching for specific 
genera, such as Pseudomonas. The increased abundance of Brevundimonas and Staphylococcus in 
primary tumors is associated with the development of distant metastases, suggesting a potential link 
between therapy-induced microbial shifts and tumor recurrence (115). 



Li et al. Cancer Biome and Targeted Therapy 2026; 1(1):1-31 
 

10	
	

2.2.5 Other Non-Cellular Factors 

Various other molecules and pathways contribute to the complexity of the TNBC TME. RNA 
methylation modifications play a critical role in mediating cellular subtypes and influencing prognosis 
and immune therapy response in TNBC (116). Targeting Long non-coding RNAs, such as MALAT1, 
can alter the immune microenvironment, thereby reducing immunosuppression and increasing T-cell 
infiltration (117). Thymidine Kinase-1 expression is associated with high Treg-cell infiltration and poor 
prognosis, and may serve as a biomarker and target (93, 118). Lymphocyte activation gene-3, an 
immune checkpoint protein, is highly expressed in TILs in TNBC and correlates with the ligand 
programmed death-ligand 1 (PD-L1), suggesting its potential as a target for immunotherapy. However, 
its prognostic significance requires further investigation (119). CXCL16 and STAT1 signaling in 
myeloid cells are implicated in immune suppression and resistance to chemotherapy-primed ICI 
therapy, with STAT1 inhibition showing potential to sensitize TNBC to immune checkpoint blockade 
(36).  

The intricate interplay between cellular and non-cellular components generates a distinct and 
challenging microenvironment in TNBC. TME heterogeneity complicates the development of effective 
therapeutic strategies. Tumors may be classified as “hot” (inflamed, high TILs) or “cold” (non-
inflamed, low TILs), yet even “hot” tumors can exhibit dysfunctional or excluded immune cells (88, 
89). Addressing this complexity requires targeted interventions that modulate specific TME 
components or pathways to shift the balance toward anti-tumor immunity and overcome resistance. 

3. Targeting Approaches to Overcome Immune Escape in the Triple-Negative Breast Cancer 
Tumor Microenvironment 

The efficacy of cancer immunotherapy, particularly ICIs, is profoundly limited by the capacity of 
tumors to enact a multitude of immune escape mechanisms. These mechanisms, driven by cellular 
components such as TAMs, MDSCs, and Tregs, as well as physical barriers such as fibrotic ECM and 
TME metabolic pathways, create an immunosuppressive niche that excludes or inactivates cytotoxic 
immune cells. Therefore, the next frontier in TNBC therapy lies in developing strategies that build upon 
the foundation of ICIs by not only unleashing anti-tumor immunity but also systematically dismantling 
these immune escape pathways. This section reviews therapeutic approaches framed by overcoming 
specific immune evasion strategies (Figure 4). 

Figure 4. Overview of therapeutic strategies targeting 
the triple-negative breast cancer (TNBC) tumor 
microenvironment (TME). Approaches aim to overcome 
tumor-associated immunosuppression by targeting key 
cellular and molecular components of the TME. Strategies 
illustrated include immune checkpoint inhibition (anti-
PD-1 and anti-CTLA-4 antibodies) to restore T-cell 
activity; therapies targeting tumor-associated 
macrophages (TAMs), myeloid-derived suppressor cells 
(MDSCs), and other immunosuppressive populations for 
depletion or functional reprogramming; modulation of 
cancer-associated fibroblasts (CAFs) and the 
extracellular matrix (ECM) to disrupt tumor-supportive 
stromal signaling; inhibition of critical cytokine and 
chemokine networks, including IL-3, IL-4, IL-10, IL-6, 
and CCL2; conventional cytotoxic modalities such as 
chemotherapy and radiotherapy; and emerging cell-
based therapeutic strategies. Figure created with 
BioRender. 
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3.1 Immune Checkpoint Inhibitors (ICIs) 

ICIs, especially those targeting programmed cell death protein 1 (PD-1) and PD-L1, have shown 
significant promise in TNBC (14, 48, 120-122). Compared to other breast cancer subtypes, TNBC 
exhibits superior immunogenicity, characterized by a higher mutation burden and TIL infiltration, 
making it a suitable candidate for immunotherapy (13, 15, 28). ICIs function by blocking inhibitory 
signals that hinder T cells from targeting cancer cells and restoring or enhancing anti-tumor immunity 
(13, 15, 28). The limitations of single-agent ICIs underscore the need for combination strategies. 
Simultaneously targeting immune checkpoints and modulating the TME can enhance anti-tumor 
immunity and overcome resistance mechanisms. Clinical evidence supports the use of PD-1/PD-L1 
inhibitors in TNBC across early and metastatic stages (123, 124). Still, their efficacy is limited to a 
subset of patients due to the complex and often immunosuppressive TNBC TME (28, 40, 48). Factors 
influencing ICI response include the level and spatial distribution of TILs, PD-L1 expression on tumor 
and immune cells, and the presence of immunosuppressive cell populations and pathways within the 
TME (28, 52, 88). For example, the immunomodulatory subtype of TNBC, characterized by a “fully 
inflamed” TME, appears to be the most responsive to ICIs (52). Conversely, the recruitment and 
activation of immunosuppressive cell populations are primary mediators of ICI resistance. For instance, 
Tregs directly suppress CTL activity in the TME, while M2-polarized TAMs and MDSCs establish a 
localized immunosuppressive milieu through cytokine secretion and metabolic dysregulation, such as 
arginase and IDO (65, 85). Furthermore, the CAF-derived dense ECM creates a physical barrier that 
impedes T cell infiltration (49, 101). This underscores the need for combinatorial strategies that target 
these specific escape mechanisms to overcome ICI resistance. In addition to PD-1/PD-L1, other 
immune checkpoints are being investigated as therapeutic targets in TNBC. Lymphocyte activation 
gene-3 is another inhibitory receptor expressed on TILs. Its high expression in the TNBC TME, often 
associated with PD-L1, suggests that dual blockade may benefit certain patients (119). CTLA-4 is a 
well-established immune checkpoint target, and the combination of anti-CTLA-4 with anti-PD-1 has 
shown performance in other cancers (49, 107). 

3.2 Strategies to Counteract Immune Escape Mechanisms 

3.2.1 Reprogramming Myeloid-Driven Immunosuppression 

To counteract myeloid-driven immunosuppression, a primary immune escape pathway, several 
strategies targeting TAMs and MDSCs are in development. Given their prominent role in promoting 
tumor growth, metastasis, and immunosuppression, TAMs are attractive therapeutic targets in TNBC. 
Strategies include inhibiting TAM recruitment, depleting TAMs, or reprogramming their phenotype 
from pro-tumorigenic M2 to anti-tumorigenic M1 (17, 37, 41, 50, 125-127). Targeting the 
VEGFA/NRP-1/GAPVD1 axis, which facilitates crosstalk between TNBC cells and TAMs and 
enhances cancer stemness, represents a potential therapeutic strategy (17). Targeting the 
eNAMPT/CCR5/CCL2 feedback loop between TAMs and TNBC cells, which facilitates M2 
polarization and macrophage recruitment, could disrupt the pro-tumorigenic niche (57). Blocking the 
IL-6/IL-6R axis, which drives M2 polarization and cancer stemness, is another promising approach 
(37). Using MEK, PPARγ, or HDAC inhibitors to block the MEK/PPARγ/RA signaling axis, which 
drives M2-type macrophage polarization, represents an encouraging treatment option for modulating 
the tumor microenvironment and enhancing anti-tumor immunity (128). Novel approaches employing 
targeted delivery systems are being developed that specifically reprogram TAMs to the M1 phenotype 
(41, 129, 130). Plant-derived extracellular vesicles (EVs) have also been shown to induce M1 
polarization of TAMs, thereby contributing to their antitumor effects (50). A newly developed 
biomimetic tumor cell membrane-encapsulated nanodelivery system, assembled from a second near-
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infrared photothermal agent, chemotherapeutic drugs, and PD-L1 inhibitors coated with TNBC cell 
membranes, is used to enhance immunotherapy (120). Targeting signaling pathways within TAMs is 
also being explored. The PI3K-γ inhibitor Eganelisib was shown to reprogram TAMs from an 
immunosuppressive to an immune-activating phenotype, improving ICI effectiveness in metastatic 
TNBC (38). TAMs promote epithelial-to-mesenchymal transition (EMT) and enhance CSC 
characteristics in TNBC by activating the CCL2/AKT/β-catenin signaling pathway (131), offering 
novel approaches for diagnosing and treating TNBC. Targeting TAM-specific pathways to influence 
the TME provides a promising therapeutic strategy. 

Targeting immunosuppressive cells such as MDSCs and Tregs to reduce their numbers or suppress their 
function is critical for enhancing anti-tumor immune responses (91, 93, 132). Targeting specific 
pathways within these cells, or the factors that recruit them, is a potential strategy. A novel peptidyl 
arginine deiminase 4 inhibitor has the potential to reshape the phenotype of neutrophils, a subset of 
MDSCs, and reduce MDSC accumulation (91).  

3.2.2 Alleviating Treg-Mediated Inhibition 

Strategies aimed at limiting Treg recruitment and suppressive activity represent a promising approach 
to enhancing antitumor immunity. Tumor cells can actively recruit Tregs through chemokine signaling; 
for example, CCL20, secreted by tumor cells under the influence of intra-tumoral bacteria, has been 
shown to promote Treg accumulation in the TME, facilitating immune evasion (34). Inhibiting such 
chemokine-mediated pathways could therefore reduce Treg-cell infiltration, restore effector T cell 
function, and increase tumor responsiveness to immunotherapy. In addition to chemokine-driven 
recruitment, specific molecular markers associated with Treg infiltration and poor clinical outcomes, 
such as Thymidine Kinase-1 (TK1), have emerged as potential therapeutic targets (93). Modulating 
these molecules may disrupt pro-tumorigenic interactions between Tregs and other TME components, 
thereby improving antitumor immune responses and patient outcomes. Moreover, the composition of 
the TME itself can be therapeutically remodeled to favor effector immune responses. Agents such 
as silver nanoparticle conjugates (AgNPs-G) have been shown to selectively reduce Treg populations 
while simultaneously promoting the infiltration and activation of cytotoxic T lymphocytes and other 
effector immune cells (32). Such strategies highlight the potential of combining TME modulation with 
direct targeting of Treg recruitment pathways to achieve stronger and more sustained antitumor 
immunity. 

Collectively, these strategies underscore the importance of targeting both the molecular drivers of Treg 
recruitment and the broader immunosuppressive landscape of the TME as a multifaceted approach to 
overcome immune evasion in cancer. 

3.2.3 Disrupting the Stromal Barrier 

CAFs contribute to ECM remodeling, immune suppression, and drug resistance, making them relevant 
therapeutic targets (49, 51, 133). Strategies include inhibiting CAF recruitment or function and 
disrupting the CAF-mediated ECM barrier. Targeting EMP1 or disrupting the EMP1/IL-6 signaling 
axis could reduce CAF infiltration and impede tumor progression (51). Disrupting the ECM and 
reducing fibrosis, processes often driven by CAFs, can enhance drug delivery and improve immune cell 
infiltration (49). Inhibiting TGF-β, a key cytokine secreted by CAFs, using Tranilast has been shown 
to normalize the TME by reducing ECM components, improving perfusion, and facilitating immune 
cell infiltration (49). Targeting CAFs can also disrupt their role in forming cancer stem cell niches, 
potentially improving treatment outcomes (134). 
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3.2.4 Reversing Metabolic Immune Suppression 

Metabolic reprogramming in the TME contributes to immune suppression and resistance (135). 
Inhibiting glycolysis in TNBC cells, for example, by targeting GLUT1, can reduce immunosuppressive 
factors such as PD-L1 glycosylation and metabolically rewire Tregs, thereby enhancing the ICI 
response (107). Targeting GLUT3, which is elevated in metastatic TNBC and linked to glycolysis and 
the inflammatory TME, is another potential metabolic target (106). Modulating the NADPH pathway 
in tumor cells and the TME can influence redox balance and immune responses, as demonstrated by a 
nanomedicine that selectively depletes NADPH in tumor cells to enhance the efficacy of low-dose 
radiotherapy and anti-PD-L1 therapy (40). Inhibiting STAT1 signaling in myeloid cells, which is 
associated with an immunosuppressive state linked to chemotherapy priming, can sensitize TNBC to 
immune checkpoint blockade (36). It highlights the importance of targeting metabolic/signaling 
pathways in immune cells within the TME. 

3.2.5 Novel and Emerging Targets 

Numerous additional molecules and pathways within the TME are under investigation as therapeutic 
targets. Targeting the MUC1-C, which promotes immunosuppression by activating the IFN-γ pathway 
and depleting TILs, could improve ICI efficacy (88). Inhibiting CD74, which induces the expansion of 
tol-DCs and Bregs, offers a strategy to reverse immunosuppression mediated by these cell types (35). 
Modulating the AnxA1/FPR1 axis, which interacts with IL-6 signaling and affects TME components 
like fibroblasts, could also influence tumor progression (104). Targeting long non-coding RNAs, such 
as Malat1, can alter the immunosuppressive TME and increase T-cell infiltration (117). Inducing 
pyroptosis in TNBC cells using HDAC inhibitors can promote immune cell infiltration and enhance 
anti-cancer immunity (136). Targeting intratumoral bacteria, for instance, by killing F. nucleatum to 
release immunopotentiating pathogen-associated molecular patterns (PAMPs), represents a novel 
strategy to warm up ‘cold’ tumors and enhance immunotherapy (137). 

3.3 Combination Approaches 

Due to the complexity and redundancy of immunosuppressive mechanisms in the TNBC TME, single-
agent therapies frequently demonstrate limited efficacy. Consequently, combination strategies that 
concurrently target multiple TME components or pathways, or integrate TME targeting with 
conventional therapies, are under active investigation to improve therapeutic efficacy and address 
treatment resistance (13, 28, 138, 139). 

A cornerstone of this approach is the combination of ICIs with cytotoxic chemotherapy. Chemotherapy 
can modulate the TME to enhance ICI activity by inducing immunogenic cell death, releasing tumor 
antigens and damage-associated molecular patterns that stimulate anti-tumor immunity (137) (140). 
ICIs combined with chemotherapy have shown promising clinical benefit in metastatic and early TNBC 
(13, 48, 141, 142). However, chemotherapy can also induce immunosuppressive myeloid cells and alter 
the tumor microenvironment (36, 143), underscoring the need for rational combinations and timing. 

Beyond chemotherapy, combining ICIs with anti-angiogenic agents represents another promising 
avenue. Anti-angiogenic therapy can reprogram the tumor microenvironment, rendering breast cancer 
more responsive to PD-1/PD-L1 blockade. Angiogenic factors promote immunosuppression by 
inhibiting the function of antigen-presenting and effector cells, which in turn drive angiogenesis, 
perpetuating a vicious cycle of immune dysfunction (144). A phase 2 trial combining Apatinib (a 
VEGFR2 inhibitor) with Sintilimab (anti-PD-1) and chemotherapy showed a high pathological 
complete response rate in early TNBC (48). The combination of Camrelizumab (anti-PD-1) and 
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Apatinib demonstrates good tolerability in advanced TNBC, with promising objective response rates 
and progression-free survival, regardless of treatment line or PD-L1 expression status (145). 

The combination of ICIs with radiotherapy is also under active investigation. Radiation therapy can 
alter the TME by inducing immunogenic cell death and potentially reversing local immunosuppression, 
thereby acting as an in situ vaccine (14, 146-149). However, the mechanisms underlying radiation 
resistance and immune changes remain under investigation. Combining low-dose radiotherapy with 
anti-PD-L1 therapy using a nanomedicine that modulates immunometabolism shows promise for 
enhancing anti-PD-L1 efficacy (40). 

To enable these sophisticated combinations, nanomedicine and targeted delivery systems provide a 
versatile platform. Nanoparticles offer a versatile platform for co-delivering multiple therapeutic agents 
directly to the TME, overcoming biological barriers, enhancing specificity, and reducing systemic 
toxicity. These systems increase drug solubility, stability, and circulation time, thereby achieving 
targeted delivery via the enhanced permeability and retention effect or active targeting of TME 
components (32, 40, 49, 50, 120, 138, 139, 150-152). Furthermore, nanoparticles can be engineered to 
be responsive to distinct properties of the TME, such as acidic pH, oxygen deprivation, or heightened 
enzyme activity, enabling controlled drug release (89, 107, 150). 

The combination of ICIs with PARP inhibitors (PARPi) remains an active area of investigation. 
Preclinical and early clinical data continue to suggest that PARPi can enhance antitumor immunity by 
increasing PD-L1 expression, creating a rationale for this strategy. Preclinical studies reveal that PARPi 
exhibit dual immunomodulatory effects: while they can improve tumor immunogenicity by increasing 
neoantigen exposure and activating STING signaling, they may also upregulate compensatory immune 
checkpoints, such as PD-L1. However, combining PARPi with PD-1/PD-L1 blockade synergistically 
enhances T-cell-mediated tumor killing in vivo by overcoming this adaptive resistance (153-155). In a 
single-arm, open-label, phase 2 trial of niraparib combined with pembrolizumab for advanced or 
metastatic triple-negative breast cancer, the combination demonstrated a tolerable safety profile and 
promising antitumor activity, irrespective of BRCA mutation status (156). In BRCA-mutant patients, 
the MEDIOLA trial (Olaparib plus Durvalumab) achieved a disease control rate of 80% at 12 weeks 
and 50% at 28 weeks (157). These results confirm the clinical potential of this strategy. However, the 
phase III KEYLYNK-009 trial (2024), which evaluated niraparib plus pembrolizumab versus 
chemotherapy in unselected metastatic TNBC, did not meet its primary endpoints of progression-free 
survival and overall survival in the overall population. Nonetheless, improvements in both progression-
free survival and overall survival were observed in patients with tumor BRCA mutations treated with 
pembrolizumab plus Olaparib, compared to those receiving pembrolizumab plus chemotherapy, 
suggesting a potential role for this combination as a maintenance strategy in this biomarker-defined 
subgroup (158). 

Furthermore, other emerging multimodal approaches include combining ICIs with cancer vaccines or 
NK cell therapy (13, 159-163). Combining therapies that induce different forms of immunogenic cell 
death, such as immuno-chemodynamic therapy enhanced by targeting intratumoral bacteria, can 
synergistically activate anti-tumor immunity (137). Advanced preclinical models, such as 3D TME-on-
a-chip and bioprinted tumor-stroma systems, are revolutionizing our approach to TNBC. They not only 
elucidate critical tumor-stromal-immune crosstalk but also serve as powerful platforms for evaluating 
novel therapies and combinations, particularly against therapy-resistant CSCs within their complex 
microenvironment (164, 165). Strategies that combine targeting CSCs with modulating the TME are 
also promising, as the TME provides a niche for CSCs and influences their behavior (166-169). 
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The diverse range of targeting approaches reflects the TNBC TME's multifaceted nature. Strategies that 
aim to reprogram or disrupt key TME components, either alone or in combination with ICIs or 
conventional therapies, have significant potential to improve response rates and overcome treatment 
resistance. The development of targeted delivery systems, particularly TME-responsive nanoparticles, 
offers exciting opportunities to enhance the specificity and efficacy of these novel therapies. 
 
Discussion 
Despite advances in understanding the TNBC TME and in developing TME-targeted therapies, 
significant challenges persist. Different TNBC subtypes exhibit distinct TME profiles and varying 
responsiveness to therapies, emphasizing the need for personalized treatment approaches (52). 
Mechanisms of resistance to TME-targeted therapies, including ICIs, are complex and involve multiple 
redundant pathways and cell populations (15, 28, 54, 170, 171). The plasticity of TME cells, or the 
dynamic interplay among different immunosuppressive components, can lead to treatment escape 
(17, 34, 38, 41, 51, 137). Furthermore, the physical barrier imposed by the dense ECM can limit drug 
penetration and immune cell infiltration, contributing to resistance (101). Metabolic adaptations and 
hypoxia within the TME also create unfavorable conditions for anti-tumor immunity and can promote 
resistance to various therapies, including radiation (14, 106, 172-174). 

Identifying reliable predictive biomarkers is paramount for stratifying patients and selecting the most 
appropriate TME-targeted therapies or combinations. While PD-L1 expression is employed as a 
biomarker for ICI therapy, its predictive reliability is limited, and better markers are needed 
(15, 28, 175-177). Biomarkers reflecting the overall immune landscape, specific immunosuppressive 
pathways, or the presence of specific TME components are under investigation (15, 28, 34-
36, 51, 88, 93, 119, 178, 179). RNA methylation regulators and oxeiptosis scores are also being 
explored for their prognostic and predictive potential (48, 180). The application of multi-omics 
approaches is highly significant for identifying biomarkers that reveal molecular characteristics and key 
pathways driving TNBC progression and influencing the TME (181, 182). 

Future directions in targeting the TNBC TME involve several key areas. Further dissecting the intricate 
crosstalk between TME components and cancer cells is essential for identifying novel targets and 
understanding mechanisms of resistance. Developing strategies to reprogram immunosuppressive cells 
towards an anti-tumor phenotype effectively remains a priority. Targeting the ECM to improve drug 
delivery and immune infiltration is also crucial. Modulating the TME’s metabolic landscape to favor 
anti-tumor immunity is another promising avenue. The emerging role of the intratumoral microbiome 
suggests the development of novel therapeutic strategies. Combination therapies are likely to be the 
cornerstone of future TNBC treatment. Rational design of combinations requires a thorough 
understanding of how different therapies affect the TME and interact with one another. 

In conclusion, the TME is a pivotal determinant of TNBC progression, immune evasion, and therapeutic 
resistance. Targeting the TME, particularly through strategies that enhance anti-tumor immunity and 
overcome immunosuppression, offers promising avenues for improving TNBC treatment outcomes. 
While immune checkpoint inhibitors have demonstrated significant potential, their efficacy is often 
limited by the complex TME. Future efforts should focus on developing rational combination therapies 
that simultaneously target multiple pro-tumorigenic and immunosuppressive components of the TME. 
Guided by robust predictive biomarkers, more effective and personalized treatments for TNBC patients 
can be developed. 
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