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Abstract

The human microbiome, including bacteria, fungi, and viruses, is increasingly recognized as a key
player in cancer development and progression. Established oncogenic microorganisms such as
Helicobacter pylori (H. pylori), human papillomavirus, and hepatitis viruses account for nearly 15% of
cancers worldwide. Recent sequencing studies have further revealed diverse microbial communities in
organs previously thought to be sterile. Microbial dysbiosis can promote carcinogenesis through
multiple mechanisms, including DNA damage and genomic instability, chronic inflammation, immune
suppression, and metabolic reprogramming. Distinct microbial signatures have been identified across
various central malignancies, including lung, oral, gastric, pancreatic, colorectal, hepatocellular, breast,
prostate, and gynecological cancers, highlighting their potential for both diagnostic and prognostic
applications. Moreover, modulation of the microbiome is emerging as a promising therapeutic strategy,
with applications ranging from probiotics and prebiotics to enhancing responses to immunotherapy and
chemotherapy, as well as fecal microbiota transplantation. This review synthesizes current knowledge
of microbiome-cancer interactions, emphasizes their translational implications, and outlines future
directions for leveraging the microbiome in precision oncology.
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1. Introduction

Cancer remains the second leading cause of mortality worldwide. While conventional paradigms have
long attributed carcinogenesis primarily to genetic predisposition and environmental exposures,
mounting evidence now illuminates a pivotal role for the microbiome in tumor initiation and
progression.

Table 1: Cancer types and key microbial associations.

Cancer Type Associated Microbes Mechanisms Clinical Relevance
Veillonella (3-5),
Lung Fusobacterium (6), Inflammation, immune Potential biomarker
Akkermansia (7, 8) modulation
Porphyromonas gingivalis (9),
Oral Fusobacterium nucleatum (10) | EMT, immune suppression | Diagnostic saliva tests
H. pylori (11, 12), Candida DNA damage, chronic Target for eradication
Gastric albicans (13), EBV (14) gastritis, PD-L1 therapy
upregulation
Malassezia, P. (15) gingivalis Complement activation, Prognostic biomarkers
Pancreatic (16), Fusobacterium (17) immune suppression
Fusobacterium nucleatum (18), | DNA alkylation, T cell Stool-based screening
Colorectal Bacteroides fragilis (19), pks+ | inhibition
E. coli (20)
Hepatocellular Dysbiotic gut flora (21) Bile acid metabolism, gut— | Microbiome-liver cancer
Carcinoma liver axis therapy
Breast Lactobacillus (22) Estrogen metabolism, Tumor microbiome studies
immune dysfunction

In this context, specific microbial infections, including those caused by viruses, bacteria, and fungi, are
increasingly recognized as significant risk factors for cancer development. Epidemiological data
indicate that approximately 15% of cancers globally can be attributed to infection with carcinogenic
microbes, with this burden disproportionately affecting low and middle-income countries (1).
Moreover, co-infection with multiple microbial agents may synergistically amplify the likelihood of
cancer development. Notable contributors to this global cancer burden include H. pylori, human
papillomavirus (HPV), hepatitis B and C viruses (HBV and HCV), Epstein-Barr virus (EBV), human
immunodeficiency virus (HIV), and human herpesviruses (HHV), each contributing to varying extents.
These infection-associated cancers underscore the oncogenic potential of specific microbes.
Importantly, accumulating evidence suggests that cancer risk is not limited to direct infection alone.
Advances in sequencing and microbial ecology have revealed that the broader commensal microbiome,
encompassing both classical pathogens and other microbes, also influences the tumor
microenvironment, modulates immune surveillance, and impacts cancer-related processes. This
paradigm shift has thus expanded the focus from isolated infectious microbes to the complex microbial
communities that coexist within the human host.

The human microbiome includes all microbial communities residing on and within the human body. It
is intricately linked to multiple facets of host health and disease (2). Microbial ecosystems exist across
virtually all examined human ecological niches. This includes the oral cavity, cutaneous surfaces,
gastrointestinal tract, esophagus, lungs, and beyond (Figure 1).
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Figure 1. Overview of the human
microbiome and its interactions with the
host. The figure provides a schematic
overview of the human microbiome across
major anatomical sites, including the
gastrointestinal ~ tract, oral  cavity,
respiratory system, urogenital tract, and
skin. Each region harbors a distinct
microbial ~ community  composed  of

bacteria, fungi, and viruses that work

; ™ collectively to maintain host homeostasis.
Gastric N\) Microbiome—host  interactions  occur
cancer/ . . . .

\ through immune signaling, metabolic

crosstalk, and regulation of epithelial
barrier integrity, supporting both local
and systemic physiological balance. The
diagram also highlights how disruptions in
these interactions, referred to as dysbiosis,
can lead to immune imbalance, chronic
inflammation, and increased susceptibility

to disease, including multiple cancer types.
This figure was created with Figdraw
(www.figdraw.com,).

These complex microbiotas comprise diverse microorganisms, including bacteria, archaea, viruses,
bacteriophages, and fungi. Together, they shape the ever-changing microbial environment of the human
body. Disruptions in the gut microbial balance, often referred to as dysbiosis, are increasingly associated
with tumor development. Gastric cancer is a clear example of the connection between microbial
imbalance and host epithelial behavior. In addition to the well-known role of H. pylori, acid-tolerant
bacteria, such as Lactobacillus, Veillonella, and Clostridium species, have been observed to increase in
the stomach. This shift suggests their potential role in cancer development when the microbial balance
is disrupted. In lung cancer, distinct microbial signatures associate with specific histological subtypes.
Small-cell lung cancer (SCLC) is associated with increased prevalence of KIl, Acidovorax,
Polaromonas, Rhodoferax, and Xylobacter. In contrast, non-small cell lung cancer (NSCLC) patients
have elevated Ruminococcus spp., Akkermansia muciniphila, Eubacterium spp., and Alistipes spp.
These differential patterns suggest that respiratory and gut microbiota may both contribute to lung
cancer pathophysiology. This highlights the potential utility of the microbiome as a biomarker or
therapeutic target in oncological management.

This review consolidates recent insights into the role of the microbiome in major cancer types, including
lung, oral, pancreatic, gastric, colorectal, hepatocellular, breast, prostate, and gynecological cancers.
The review connects the mechanistic bases discussed above with prospective clinical strategies. It also
highlights future directions for translational research in this rapidly evolving field.

2. The link between microbiome and cancer development

The microbiome contributes to oncogenesis by inducing genomic instability and structural aberrations
(23). Within the tumor microenvironment (TME), certain microorganisms and their secreted toxins can
directly damage host DNA, thereby increasing the mutational burden in colonized tissues. As DNA
lesions accumulate beyond a critical threshold, regulatory networks governing cellular proliferation
become disrupted, ultimately driving tumor initiation and progression (24, 25). A well-characterized
example is Escherichia coli (E. coli) strains harboring the polyketide synthase (pks) gene cluster (pks+
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E. coli), which has been implicated in colorectal carcinogenesis by inducing somatic mutations and
DNA breaks (26, 27) (Figure 2A).
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Figure 2. Mechanistic pathways linking the microbiome to cancer development. (4) Genotoxic bacteria, such
as pks+ Escherichia coli, induce genomic instability by causing DNA damage, leading to somatic mutations and DNA breaks
in epithelial cells. (B) Epigenetic reprogramming driven by microbial infection, exemplified by Helicobacter pylori, activates
NF-kB and STAT3 signaling and promotes upregulation of DNA methyltransferases, thereby altering gene regulation.
(C) Chronic inflammation induced by pathogenic bacteria, such as Pseudomonas aeruginosa, involves microbial components,
including flagellin and ExoU, leading to NF-xB activation and sustained inflammatory signaling in epithelial tissues. Arrows
indicate directional interactions among microbial, immune, and epithelial compartments. Figure created with Figdraw
(www.figdraw.com).

In a seminal study, Pleguezuelos-Manzano et al. co-cultured human intestinal organoids derived from
healthy stem cells with pks+ E. coli, demonstrating that long-term bacterial exposure induces distinctive
mutational signatures, including single base substitutions (SBS-pks) and small insertion-deletion events
(ID-pks). Beyond bacterial genotoxins, microbial metabolites play a decisive role in promoting DNA
damage. For instance, small-molecule derivatives from diverse gut microbiota directly impair DNA
integrity in acellular assays, induce double-strand break (DSB) markers (y-H2AX), and cause epithelial
cell-cycle arrest. Specifically, indolimine metabolites from Morganella morganii have been shown to
exacerbate colon tumorigenesis in germ-free mice (28). Additional pathogenic mechanisms involve
effector proteins secreted by enteropathogenic E. coli and H. pylori that disrupt DNA mismatch repair,
thereby destabilizing the genome and fueling tumorigenesis (29, 30). These processes are frequently
associated with the overproduction of reactive oxygen species (ROS), hydrogen sulfide, and nitric
oxide, molecules well known to contribute to genotoxic stress (31, 32). Viruses also represent important
microbial drivers of genomic instability. For example, Merkel cell polyomavirus (MCPyV) integrates
viral DNA into host genomes and persistently expresses the viral T antigen, which contributes to
tumorigenesis in approximately 60% of Merkel cell carcinoma cases (33, 34). Beyond genetic
alterations, microorganisms exert oncogenic influence through epigenetic reprogramming. H. pylori,
particularly CagA-positive strains, can induce aberrant DNA hypermethylation of tumor suppressor
gene promoters in gastric mucosa via nuclear factor kappa B (NF-kB)/STAT3-mediated upregulation
of DNA methyltransferases. Microbe-driven epigenetic modifications, encompassing altered DNA
methylation, dysregulated noncoding RNAs, and histone modifications, represent key mechanisms
linking chronic infection to malignant transformation (Figure 2B).
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Chronic inflammation and the sustained production of inflammatory mediators generate a tumor-
permissive microenvironment, thereby constituting a major driver of carcinogenesis (35). Microbial
components can act as key inflammatory triggers; for instance, Pseudomonas aeruginosa-derived
factors such as flagellin and the cytotoxin ExoU exhibit strong pro-inflammatory activity by recruiting
neutrophils and activating NF-xB signaling, ultimately accelerating the progression of oral cancer (36)
(Figure 2C). Similarly, disruption of the intestinal epithelial barrier enables microbial products to
translocate into host tissues, where they activate tumor-infiltrating dendritic cells (DCs) with
inflammatory phenotypes. This, in turn, promotes the polarization of yd T17 cells, which secrete high
levels of pro-inflammatory cytokines, including IL-17, IL-8, granulocyte-macrophage colony-
stimulating factor (GM-CSF), and TNF-a. These mediators not only perpetuate inflammation but also
recruit polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), thereby reprogramming
the inflammatory milieu into an immunosuppressive state that facilitates colorectal cancer progression
(37). As illustrated in Figure 2, the microbiome influences tumorigenesis through multiple converging
axes, including genomic instability, chronic inflammation, immune suppression, and metabolic
reprogramming. These pathways interact dynamically within the tumor microenvironment,
underscoring the multifactorial nature of microbiome-driven carcinogenesis. The following sections
present major cancer types in an order reflecting the progressive spectrum of microbial exposure and
research development, from external or mucosal interfaces (e.g., lung and oral cavity) to internal organ
systems (e.g., gastrointestinal, hepatic, and endocrine-related malignancies). The sequence aims to
illustrate the expanding conceptual framework of microbiome-associated carcinogenesis.

2.1. Lung cancer

Lung cancer ranks as the foremost cause of cancer-related mortality worldwide and represents the
second most frequently diagnosed malignancy, representing one of the most frequently diagnosed
malignancies (38). The disease is often detected at advanced stages, and its etiology is predominantly
linked to tobacco smoking. Nevertheless, epidemiological evidence indicates a rising incidence among
never-smokers, now accounting for approximately 25% of cases (39). Biologically, lung cancer is a
heterogeneous entity encompassing multiple histopathological subtypes, which are broadly categorized
into two principal groups: small-cell lung carcinoma (SCLC), the most aggressive and lethal form, and
non-small-cell lung carcinoma (NSCLC) (40). While SCLC accounts for 10-15% of lung cancer cases,
approximately 85% are classified as NSCLC, which encompasses three predominant histological
subtypes: adenocarcinoma, squamous cell carcinoma (SCC), and large-cell carcinoma, each
characterized by distinct histological and molecular profiles. At the molecular level, the genomic
architecture and genetic heterogeneity of lung cancer have been extensively delineated, underscoring
its nature as a highly heterogeneous group of malignancies. Although recent advances have led to the
development of targeted therapies for certain genetic subtypes, the overall survival rate for lung cancer
remains alarmingly low. Cigarette smoking remains the primary risk factor, while other well-established
contributors include ambient air pollution and occupational exposure to radon and asbestos (41, 42). As
the mucosal organ with the largest surface area (e.g., upper vs. lower lobe) and a principal interface
between the host and the external environment, the lung is uniquely positioned for continual exposure
to airborne microorganisms and environmental pollutants (43,44). However, the precise mechanisms
by which these environmental risk factors and other tumor-extrinsic influences drive lung
carcinogenesis remain incompletely understood. Traditionally, healthy lungs were thought to be sterile;
however, with the advent of increasingly sophisticated detection methodologies, including computed
tomography (CT) imaging, polymerase chain reaction (PCR) assays, and 16S rRNA gene sequencing,
investigations into the pulmonary microbiome have expanded considerably (45, 46). Since 2011,
growing evidence has highlighted associations between distinct microbial communities and a range of
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pulmonary pathologies, confirming that these communities harbor a variety of microorganisms (43, 47)
(Table 2).

Table 2. Lung microbiome and its association with lung cancer.

Lung microbiome Types Potential mechanisms
Pseudomonas (47, 49, 57- Gram-negative, These microbial alterations were found to correlate
59) aerobes positively with macrophage abundance and elevated IFN-y
levels in bronchoalveolar lavage fluid, as well as with
increased neutrophil elastase activity (66, 67).
Streptococcus (47, 60-64) Gram-positive, These microbes were shown to upregulate the ERK and
facultative anaerobes PI3K signaling pathways, while exhibiting a negative
correlation with active neutrophil elastase levels (68, 69).
Sphingomonas (49, 57, 65) Gram-negative, They exhibited a positive correlation with macrophage
strictly aerobes abundance and with IFN-y levels in the bronchoalveolar
lavage (BAL)(66).
Propionibacterium Gram-positive,
facultative anaerobes Not Described.
Acidovorax Gram-negative, Not Described.
aerobes

Compositional analyses of the pulmonary microbiome indicate a taxonomic architecture predominantly
shaped by the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. Within this, the
airway microbial repertoire encompasses diverse genera, including Prevotella, Veillonella,
Streptococcus, Neisseria, Haemophilus, Fusobacterium, Sphingomonas, Pseudomonas, Acinetobacter,
Megasphaera, Staphylococcus, and Corynebacterium, which contribute to the ecological complexity
and potential functional interactions within the respiratory niche (47-49). Interestingly, marked
compositional distinctions exist between the microbiota of the upper and lower respiratory tracts. In
healthy individuals, the lower airways are predominantly colonized by Veillonella, Prevotella, and
Streptococcus, accompanied by additional taxa such as Fusobacterium and Haemophilus, populations
largely derived from the oral microbiome. Mounting evidence underscores the regulatory influence of
the gut-lung axis: the gut microbiota modulates pulmonary physiology and immune homeostasis. The
intestinal microbiota, comprising a vast array of microbial species, exerts systemic effects on pulmonary
immunity by releasing metabolites, microbial ligands, and immune mediators that circulate via the
bloodstream. These products not only influence immune activity in the lungs but may also help shape
the composition of the pulmonary microbiome. Conversely, the pulmonary microbial community plays
a pivotal role in maintaining respiratory immune homeostasis, engaging in dynamic crosstalk with
epithelial and immune cells to orchestrate both innate and adaptive immune responses (50, 51). Recent
research has implicated the gut microbiome as a potential mediator linking these environmental
exposures to lung tumorigenesis, suggesting that microbial dysbiosis may act in concert with chemical
carcinogens to influence disease initiation and progression. Accumulating evidence supports a strong
association between gut microbiota dysbiosis and lung cancer. Liu et al. reported reduced microbial
diversity and ecosystem stability in lung cancer patients, characterized by the enrichment of
opportunistic pathogens and depletion of beneficial taxa (52). Zhuang et al. reported elevated
Enterococcus abundance in the gut of lung cancer patients, alongside an overall decline in microbial
functionality, suggesting that Enterococcus and Bifidobacterium may serve as potential biomarkers
(53). Consistent with this, Zhang et al. observed reduced levels of Kluyvera, Escherichia-Shigella,
Dialister, Faecalibacterium, and Enterobacter in lung cancer patients, while Veillonella,
Fusobacterium, and Bacteroides were significantly enriched (54). Dysregulation of butyrate-producing
bacteria has also been implicated: Gui et al. identified marked reductions in Clostridium leptum,
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Faecalibacterium prausnitzii, Ruminococcus, and Clostridial cluster I spp., whereas Eubacterium
rectale and Clostridial cluster XIVa remained unaffected (55). Notably, elevated levels of Bacillus and
Akkermansia muciniphila were associated with lung cancer progression (56).

In the context of lung malignancies, distinct microbial signatures have been documented. Accumulating
evidence indicates that the pulmonary microbiota can remodel the local immune microenvironment,
thereby contributing to tumor progression. In an autochthonous mouse model, Jin et al. provided
compelling evidence that crosstalk between the lung microbiota and the host immune system is a critical
driver of inflammatory signaling and lung tumorigenesis. They reported that tumor-bearing lungs
harbored a distinct microbial signature, characterized by enrichment of taxa such as Herbaspirillum and
Sphingomonadaceae. In contrast, healthy lungs were characterized by enrichment of Aggregatibacter
and Lactobacillus. Elevated bacterial load and compositional shifts activated Myd88-dependent
signaling in myeloid cells, triggering the secretion of IL-1B and IL-23. These cytokines, in turn,
expanded and activated Vy6+V31+yd T cells, which produced IL-17 to amplify inflammation, while
concurrently secreting 1L-22 and other effector molecules that enhanced tumor cell proliferation.
Notably, both germ-free and antibiotic-treated mice exhibited attenuated tumor progression,
underscoring that commensal bacteria play an active role in facilitating lung carcinogenesis (70). Small
cell lung cancer (SCLC) has been frequently associated with genera such as Klebsiella, Acidovorax,
Polaromonas, Rhodoferax, Xylobacter, Eufluobacter, and Clostridium. In contrast, Prevotella and
Pseudobutyrivibrio ruminis appear inversely correlated with the disease.

Conversely, non-small cell lung cancer (NSCLC) has been associated with increased relative abundance
of Ruminococcus spp., Akkermansia muciniphila, Eubacterium spp., and Alistipes spp., and reduced
prevalence of Bifidobacterium longum, Bifidobacterium adolescentis, and Parabacteroides distasonis.
Collectively, these findings suggest that the gut microbiome may exert clinically relevant influences on
lung cancer pathogenesis and progression. Although several taxa have been linked to lung cancer,
findings are not always consistent across populations, which may reflect differences in diet, geography,
and sequencing methods.

2.2. Oral cancer

The origins of oral microbiology can be traced to 1670, when Antonie van Leeuwenhoek, employing a
microscope of his own design, first documented the presence of bacteria within the human oral cavity.
His sketches and descriptions of microorganisms exhibiting diverse morphologies provided one of the
earliest glimpses into the remarkable complexity of the oral microbial ecosystem (71-73).

Positioned at the forefront of the alimentary tract, the oral cavity sustains a finely tuned microbial
equilibrium that underpins both oral and systemic physiological integrity. The oral cavity comprises
multiple distinct ecological niches, including the teeth, buccal mucosa, soft and hard palates, and
tongue, which together form a highly complex microenvironment. This fosters the coexistence of
diverse microbial consortia, collectively referred to as the oral microbiome (74). Oral microbiome
dysbiosis is increasingly recognized as a contributing factor in the pathogenesis of a broad spectrum of
oral and systemic disorders. Perturbations in this homeostasis, collectively referred to as oral dysbiosis,
have been implicated as pivotal contributors to a spectrum of pathological processes. Among these, the
intricate and multifaceted interplay between oral microbial dysregulation and oral carcinogenesis has
garnered substantial scholarly interest. Notably, malignant transformation within the oral epithelium
can actively reshape the resident microbiota, thereby creating a niche increasingly conducive to tumor
persistence and progression (75-80).
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The term microbiome refers to the collective assemblage of symbiotic, commensal, and pathogenic
microorganisms inhabiting a defined ecological niche (81). The oral cavity harbors a vast and diverse
array of microorganisms and remains in continuous interaction with the external environment, rendering
it particularly susceptible to environmental influences (82). The oral microbiome is a complex
consortium of bacteria, fungi, viruses, archaea, and protozoa that collectively contribute to the
establishment and maintenance of its normal microbial community (81). Bacteria represent the principal
constituents, assembling into habitat-specific microbial consortia across the various niches of the oral
cavity.

Investigations into the oral microbiome have identified a remarkable diversity comprising more than
700 bacterial species, which are taxonomically distributed across seven principal phyla: Bacteroidota
(Bacteroidetes), Actinomycota (formerly Actinobacteria), Fusobacteriota (Fusobacteria), Bacillota
(Firmicutes), Pseudomonadota (Proteobacteria), Spirochaetota (Spirochaetes), and Saccharibacteria.
Despite this diversity, most species are derived from only a few dozen genera (83-85). The oral
microbiome is characterized by pronounced spatial and temporal variability, exhibiting rapid shifts in
both community composition and functional activity that evolve in parallel with host development.
These complex, non-equilibrium dynamics arise from a confluence of factors, including dietary
components and alterations in local pH, as well as interbacterial interactions that confer novel functional
attributes on microbial strains (86). The predominant bacterial taxa that constitute the core of the oral
microbiome are conserved primarily across individuals, reflecting a stable and shared microbial
framework despite inter-individual variability in less abundant species. The predominant bacterial
genera characterizing a healthy oral cavity are summarized in Table 3.

Table 3. Taxonomic profile of the major bacterial genera in the healthy oral microbiome.

Cocci Rods
Gram positive Abiotrophia, Peptostreptococcus, Actinomyces, Bifidobacterium, Corynebacterium,
Streptococcus, Stomatococcus. Eubacterium, Lactobacillus, Propionibacterium,

Pseudoramibacter, Rothia

Gram negative Moraxella, Neisseria, Veillonella Campylobacter, Capnocytophaga, Desulfobacter,
Desulfovibrio, Eikenella, Fusobacterium,
Hemophilus, Leptotrichia, Prevotella, Selemonas,
Simonsiella, Treponema, Wolinella.

Beyond bacterial populations, the oral microbiota also comprises diverse microeukaryotes, such as
fungi, amoebae, and flagellates, as well as archaeal species and a broad spectrum of viruses (87). In
most individuals, the oral mycobiome is composed primarily of fungal species belonging to the genera
Candida and Malassezia (88-93). The oral microbiota exerts a pivotal influence on oral health, as three
of the most common oral pathologies, dental caries, periodontal disease, and oral cancer, are primarily
driven by microbial etiologies. Several extensively characterized periodontal microbiomes have been
identified as central to elucidating the mechanistic links between oral microbial dysbiosis and
oncogenesis (94). Oral squamous cell carcinoma (OSCC) represents the predominant malignancy of the
head and neck region, comprising nearly 2% of all cancer diagnoses worldwide (95). While traditionally
linked to lifestyle risk factors such as tobacco use and excessive alcohol consumption, emerging
evidence implicates specific constituents of the oral microbiome in OSCC pathogenesis. Among these,
Porphyromonas gingivalis has received particular attention due to its well-documented association with
the initiation and progression of neoplastic transformation in the oral cavity (96). In a comparative
analysis of microbial communities within OSCC lesions and contralateral healthy tissues from 50
patients, Zhang et al. reported a significant enrichment of Porphyromonas species in tumor-associated
samples (97). This observation is consistent with findings by Katz et al., who documented elevated
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levels of P. gingivalis in gingival specimens from patients with OSCC compared with healthy controls
(98). Together, these studies underscore that microbial communities differ markedly between malignant
and adjacent healthy oral tissues, with tumor sites harboring a greater abundance of pathogenic taxa. A
systematic review and meta-analysis by Sayehmiri et al. further confirmed this association (99),
revealing that colonization by P. gingivalis was associated with an increased risk of oral cancer (odds
ratio, 1.36), with gingival cancers accounting for most cases. Experimental evidence also supports these
observations: in a murine model, Wen et al. demonstrated that P. gingivalis infection promoted tumor
multiplicity and growth and accelerated malignant progression (100). Beyond P. gingivalis, Rai et al.
recently demonstrated that Porphyromonas endodontalis was also enriched in the salivary microbiota
of patients with OSCC, suggesting that multiple Porphyromonas species may contribute to oral
tumorigenesis (101).

As the lungs and oral cavity are connected, the composition and dynamics of the oral microbiome are
closely linked to those of the lung microbiome. Migration of oral bacteria into the lower respiratory
tract represents a key pathogenic mechanism underlying aspiration pneumonia (102). Likewise, their
colonization of the gastrointestinal tract, often intensified by dysregulated gastric or bile acid secretion
in systemic disorders such as cirrhosis, has been associated with the development of inflammatory
bowel disease and colorectal cancer (103-107).

In addition, the carriage of specific oral microbiota has been linked to an increased susceptibility to
pancreatic cancer (PC) (108-111). Multiple studies have reported significant associations between
Porphyromonas gingivalis and PC, while Mitsuhashi et al. demonstrated that the intratumoral presence
of Fusobacterium nucleatum correlates with poorer clinical outcomes (112). Beyond these organisms,
Fan et al. further identified Aggregatibacter actinomycetemcomitans and Alloprevotella as associated
with an increased risk of PC development (108). Moreover, Wei et al. reported that colonization by
Leptotrichia and Streptococcus species is also associated with an elevated risk of pancreatic cancer
(113). In one of the earliest investigations into the association between the oral microbiota and PC,
Farrell et al. identified an enrichment of Granulicatella adiacens in patients with PC. Additionally, their
analysis revealed differential abundances of Neisseria elongata and Streptococcus mitis between
affected individuals and healthy controls (114). It remains uncertain whether these microbes are true
oncogenic drivers or secondary colonizers of the tumor niche.

2.3. Gastric cancer

Gastric cancer (GC) ranks among the most prevalent malignancies and remains a leading contributor to
global cancer-related mortality (115, 116). GC was initially categorized based on histopathological and
anatomical criteria; however, these conventional classifications proved inadequate for guiding
therapeutic decision-making and yielded only a slight improvement in patient outcomes. More recently,
clinical and molecular profiling has emerged as a more reliable framework for stratifying patients and
tailoring treatment strategies. Genomic approaches have been particularly instrumental in delineating
molecular subtypes of GC. In 2011, Tan et al. proposed two distinct genomic variants-the genomic
intestinal (G-INT) and genomic diffuse (G-DIF) subtypes, characterized by unique histological features,
gene expression signatures, biological pathways, and prognostic implications. These molecular
subtypes partially overlap with Lauren’s traditional classification, reflecting the profound clinical and
biological heterogeneity of GC, largely attributable to the diverse molecular landscapes of malignant
cells (117). GC is rarely diagnosed at an early stage, which substantially restricts therapeutic options.
Its biological complexity continues to obscure a comprehensive understanding of disease mechanisms,
thereby posing significant challenges to effective management and eradication. The development of GC
represents the culmination of a multifaceted interaction among host genetic susceptibilities,
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environmental exposures such as tobacco use, alcohol consumption, high dietary salt and meat intake,
and insufficient consumption of fruits and vegetables, and microbial influences, most notably H. pylori
infection and alterations within the gastric microbiome (118-120). A defining feature of GC lies in its
intricate relationship with the resident microbial ecosystem of the stomach. While H. pylori has long
been established as the primary initiator of gastric carcinogenesis, emerging evidence highlights the
broader contribution of diverse microbial inhabitants of the gastric mucosa to disease progression (121).
Perturbations in the gastric microbiota appear to orchestrate key events across the carcinogenic
continuum, spanning the transition from premalignant alterations to the establishment of invasive
gastric cancer (122-125).

The human gastrointestinal tract harbors a highly diverse microbial ecosystem, collectively referred to
as the gut microbiome. This community is primarily composed of four dominant bacterial phyla:
Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria. Among these, Firmicutes, including
genera such as Clostridium, Ruminococcus, Eubacterium, Dorea, Peptostreptococcus, and
Lactobacillus, are the most prevalent, accounting for approximately 30.6%-83% of the total microbiota.
Bacteroidetes, primarily represented by Bacteroides, constitute 8-48%, whereas Actinobacteria,
dominated by Bifidobacterium, contribute 0.7-16.7%. Proteobacteria, including members of the
Enterobacteriaceae, make up a variable fraction ranging from 0.1-26.6% (126). Alterations in microbial
composition can impair the equilibrium between the gut microbiota and the host immune system,
thereby predisposing the intestinal environment to chronic inflammation and subsequent oncogenic
transformation.

Extensive research has established H. pylori as a central factor in gastric cancer (GC) pathogenesis. Its
discovery not only overturned the long-standing belief that the acidic stomach is sterile but also marked
the identification of the only bacterial species thus far classified as a class I carcinogen. Although spiral-
shaped microorganisms in the stomach had been observed earlier, it was not until 1982 that Warren and
Marshall conclusively linked bacterial infection to chronic gastritis and successfully isolated the
causative organism (127, 128). The gastric environment exhibits a steep pH gradient, ranging from 1 to
2 within the gastric lumen to 6 to 7 along the mucosal surface, with the latter providing a more favorable
niche for microbial colonization (129, 130). Bacteria typically enter the stomach from the upper
digestive or respiratory tracts. H. pylori has uniquely adapted to survive in the acidic milieu of the
stomach and is recognized as a key etiological agent of noncardiac gastric adenocarcinomas. This Gram-
negative, spiral-shaped, flagellated member of the phylum Proteobacteria exhibits urease, catalase, and
oxidase activities, which facilitate its persistence in the gastric niche (131, 132). H. pylori is
characterized by high motility conferred by a unipolar bundle of sheathed flagella (133). Clinically, H.
pylori infection is strongly implicated in the pathogenesis of chronic gastritis, atrophic gastritis,
mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric adenocarcinoma (134).

H. pylori promotes gastric carcinogenesis by inducing direct genotoxic stress, primarily through the
conversion of nitrogenous compounds in gastric fluid into carcinogenic N-nitroso compounds (NOCs)
and reactive nitrogen intermediates, while simultaneously fostering a chronic pro-inflammatory
microenvironment within the gastric mucosa (135). The oncogenic potential of H. pylori is largely
attributed to two major virulence determinants: cytotoxin-associated gene A (CagA) and vacuolating
cytotoxin A (VacA), which perturb host cell functions and activate oncogenic signaling pathways (136,
137). CagA, a strain-specific effector protein delivered into host epithelial cells via the H. pylori type
IV secretion system, functions as a classical oncogene. Its activity contributes to chronic gastritis, peptic
ulcer disease, MALT lymphoma, and gastric carcinoma. Mechanistically, CagA disrupts epithelial
homeostasis by suppressing apoptotic pathways and inducing morphological abnormalities, such as cell
scattering, elongation, and loss of polarity (137). VacA represents another major H. pylori virulence
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determinant, functioning as a multifunctional exotoxin that induces diverse pathological effects in host
cells, including vacuolization, apoptosis, and necrosis. Beyond these cytotoxic properties, VacA
integrates into host cell membranes, where it behaves as an anion-selective channel. Through this
channel activity, VacA facilitates the efflux of bicarbonate and organic anions into the cytoplasm, which
enhances H. pylori colonization and persistence within the gastric niche (138). H. pylori infection elicits
chronic inflammation within the gastric mucosa, a recognized antecedent of neoplastic transformation
(139). H. pylori also induces inflammatory responses in gastric epithelial cells primarily through
activation of NF-kB, which drives the secretion of proinflammatory cytokines, including interleukin
(IL)-1B, IL-2, IL-6, IL-7, IL-8, IL-10, interferon-y (IFN-y), and tumor necrosis factor-a (TNF-a). In
addition, H. pylori promotes inflammation by upregulating cyclooxygenase-2 (COX-2), thereby
increasing prostaglandin E2 (PGE2) production (139).

Accumulating evidence indicates that, beyond H. pylori, other constituents of the gastric microbiota
play critical roles in driving malignant transformation. For example, fungi and viruses may also
contribute to the multifactorial processes underlying gastric carcinogenesis. A study by Zhong M et al.
identified a GC-associated mycobiome imbalance characterized by disrupted fungal composition and
ecology, highlighting Candida albicans as a potential fungal biomarker for gastric cancer. In GC
samples, the relative abundance of C. albicans, Fusicolla acetilerea, Arcopilus aureus, and Fusicolla
aquaeductuum was markedly elevated, whereas Candida glabrata, Aspergillus montevidensis,
Saitozyma podzolica, and Penicillium arenicola were significantly reduced. Moreover, C. albicans may
contribute to gastric carcinogenesis by reducing fungal richness and diversity in the stomach, thereby
facilitating disease progression (13). Fungal dysbiosis in the stomach has been shown to activate
inflammatory pathways, including cytokine and chemokine signaling. In the context of impaired
immune responses, particularly in patients with advanced-stage GC, this imbalance increases
susceptibility to opportunistic fungal infections. However, whether the enrichment of specific fungi in
GC is a driving factor in immune dysregulation or merely a consequence of tumor-associated changes
remains unresolved, and their potential roles as oncogenic pathogens warrant further investigation (140,
141). Epstein-Barr virus (EBV) accounts for approximately 7-9% of global gastric cancer cases
annually and promotes carcinogenesis through extensive genomic and epigenomic alterations (142).
EBV-driven amplification and overexpression of programmed death ligand 1 (PD-L1) enable tumor
cells to evade T cell-mediated immunity, while latency-associated products, including EBV nuclear
antigen 1, latent membrane protein 2A, and viral microRNAs, further contribute to oncogenesis by
inducing epigenetic dysregulation and aberrant mRNA transcription (143, 144). Although other viruses,
such as human papillomavirus, human herpesvirus, and hepatitis viruses, have been implicated in GC,
no definitive causal role has been established. Overall, the gastric virome remains poorly characterized
and warrants further investigation (145).

2.4. Pancreatic cancer

Pancreatic cancer (PC) represents one of the most lethal and aggressive malignancies, with a rising
incidence globally. In the United States, the current 5-year overall survival rate remains dismal at only
10.8%. Broadly, pancreatic cancers are classified into two major categories: pancreatic ductal
adenocarcinoma (PDAC) constitutes over 90% of all pancreatic malignancies, representing the
predominant histological subtype (146), and pancreatic neuroendocrine tumors (PanNETs), a less
common but biologically distinct entity (147). PDAC is a highly aggressive malignancy characterized
by an exceptionally poor prognosis. This unfavorable outcome is primarily attributed to its frequent
diagnosis at advanced, often unresectable stages, coupled with a high degree of intrinsic and acquired
resistance to conventional therapies. Surgical resection remains the sole potentially curative treatment
for pancreatic ductal adenocarcinoma; however, only approximately 20% of patients present with
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tumors amenable to resection at the time of diagnosis (148). Despite intensive research, the molecular
mechanisms driving PDAC oncogenesis and its profound treatment refractoriness remain incompletely
understood (149). The development of pancreatic cancer is driven by a multifactorial interplay of
influences, including genetic alterations, lifestyle factors, particularly smoking and high-fat diets;
dysbiosis of the gut microbiota; and comorbid conditions such as obesity, type 2 diabetes, and chronic
pancreatitis, among others (150-154). Given the poor long-term outcomes of PDAC and the limited
efficacy of current systemic therapies, there is an urgent need to develop novel therapeutic approaches
and supportive strategies that aim to improve patients' quality of life. Increasing attention has recently
been directed toward the relationship between pancreatic cancer and the microbiome. In PDAC,
dysbiosis involving bacterial, fungal, and viral communities has been consistently reported (155). Thus,
modulation of the gut microbiome and restoration of its ecological balance may represent a promising
avenue for therapeutic intervention.

Historically, the pancreas was regarded as a sterile organ, much like the lung. However, recent advances
in sequencing technologies have revealed that pancreatic tissue harbors its own distinct microbiota
(156). In a seminal study, Pushalkar et al. used 16S rRNA gene sequencing and demonstrated that
Proteobacteria, Bacteroidetes, and Firmicutes were significantly enriched in pancreatic cancer tissue
compared with normal pancreatic tissue (157). Accumulating evidence now suggests that the
intratumoral microbiome plays a crucial role in the initiation, progression, and prognosis of pancreatic
cancer (154, 157-161). These effects are mainly mediated by microbial modulation of host immune
responses and alterations in drug metabolism, thereby influencing both tumor biology and therapeutic
outcomes. Multiple epidemiological and mechanistic studies have highlighted the contribution of
periodontal disease and tooth loss to pancreatic carcinogenesis. A comprehensive meta-analysis
reported a strong association between periodontal pathologies, particularly the presence of
Porphyromonas gingivalis, and increased risk of pancreatic cancer (162). Furthermore, several
investigations have explored the relationship between specific oral pathogens, including P. gingivalis,
Fusobacterium spp., Neisseria elongata, and Streptococcus mitis, and the development of PDAC.
Among these, P. gingivalis consistently shows the strongest positive correlation with PDAC
susceptibility, suggesting a potential role as a microbial risk factor in pancreatic tumorigenesis (163,
164). Emerging evidence indicates that fungal and viral infections may contribute to the pathogenesis
of pancreatic cancer (PC).

A study by Aykut et al. demonstrated that the intrapancreatic mycobiome, particularly enriched with
Malassezia spp., is closely associated with the development and progression of PDAC. The fungal
composition of tumor tissue was distinct from that of the gut or normal pancreatic tissue. Notably,
experimental ablation of the mycobiome suppressed tumor growth in both slowly progressive and
invasive murine PDAC models, whereas repopulation with Malassezia spp. accelerated oncogenesis.
Mechanistic investigations revealed that ligation of mannose-binding lectin (MBL), which recognizes
glycans on the fungal cell wall and activates the complement cascade, is essential for this tumor-
promoting effect (154). Additional evidence links Candida infection with pancreatic cancer risk. A
prospective cohort study in Sweden identified an association between oral Candida colonization and an
increased incidence of PC (165). Mechanistically, Candida may drive tumorigenesis by inducing
chronic inflammation and promoting the expansion of myeloid-derived suppressor cells (MDSCs),
thereby fostering an immunosuppressive tumor microenvironment (150). Viruses have also been
implicated in pancreatic carcinogenesis. Several studies have reported associations between chronic
pancreatitis and hepatitis B virus (HBV) infection, while a meta-analysis by Arafa et al. demonstrated
that hepatitis C virus (HCV) infection significantly increases the risk of PC (166-168). These findings
suggest that chronic viral infections, through persistent inflammation and pancreatic injury, may serve
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as cofactors in pancreatic tumorigenesis. Collectively, these studies highlight the potential oncogenic
roles of fungi and viruses in PC, warranting further mechanistic and clinical investigations.

2.5. Colorectal cancer

Colorectal cancer (CRC) is the most prevalent malignancy of the digestive tract and represents a major
global health burden. Accounting for approximately 10% of all cancer diagnoses, CRC is currently the
third most common cancer worldwide and ranks among the leading causes of cancer-related mortality.
Recent estimates indicate nearly 700,000 deaths annually, underscoring its persistently high morbidity
and mortality rates. While CRC was considered relatively uncommon several decades ago, its incidence
has risen sharply, making it one of the most lethal cancers globally (95, 169). The global burden of
colorectal cancer is exacerbated not only by demographic transitions, such as population ageing, and
the prevalence of Westernized dietary habits, but also by modifiable lifestyle determinants, including
obesity, sedentary behavior, and tobacco use. Collectively, these factors amplify disease incidence and
mortality, rendering colorectal cancer a formidable challenge to healthcare systems across the world
(170).

The gut microbiome has increasingly been recognized as a pivotal determinant in human health and
disease, with mounting evidence highlighting its relevance in CRC. Numerous investigations have
demonstrated that alterations in microbial composition, shaped by dietary patterns and environmental
exposures, can promote CRC development through mechanisms involving chronic inflammation,
bioactive microbial metabolites, and pathogenic virulence factors. Beyond tumor initiation, dysbiosis
of the gut microbiota also profoundly influences CRC progression and trajectory (170-172).
Fusobacterium nucleatum has emerged as one of the most extensively studied bacterial taxa implicated
in colorectal carcinogenesis. Metagenomic profiling consistently associates Fusobacterium spp. with
CRC, although the precise nature of this relationship, causal or correlative, remains unresolved.
Castellarin et al. reported a nearly 400-fold increase in F. nucleatum transcript levels in CRC tissues
relative to adjacent normal mucosa, underscoring its enrichment in the tumor microenvironment. In an
(APC)+/— mouse model, F. nucleatum promoted neoplastic progression by creating a pro-inflammatory
milieu within intestinal epithelial cells and facilitating the recruitment of tumor-infiltrating immune
cells (173, 174). Elevated IL-17a expression has also been observed in CRC patients with abundant F.
nucleatum, suggesting a role in inflammation-driven tumorigenesis. Mechanistically, this strain exhibits
strong mucosal adherence and produces Fusobacterium adhesin A (FadA), a virulence factor that binds
to E-cadherin and activates B-catenin signaling, thereby driving oncogenic pathways (175, 176).
Notably, F. nucleatum has been associated with consensus molecular subtype 1 (CMSI1) CRC,
characterized by microsatellite instability and upregulation of the immune pathway (177, 178). More
recently, studies of metastatic CRC demonstrated that nearly identical strains of Fusobacterium persist
in both primary tumors and distant metastases, highlighting its potential role as a stable component of
the tumor microenvironment and a facilitator of disease dissemination (179).

Enterotoxigenic Bacteroides fragilis (ETBF), a strain that produces B. fragilis toxin (BFT), is
implicated not only in diarrheal disease and inflammatory bowel disease but also in colorectal
tumorigenesis (180, 181). Mechanistically, ETBF promotes tumor development by activating STAT3
signaling and driving a Th17-mediated inflammatory response (182). Colonization with BFT+ B.
fragilis also promotes the accumulation of regulatory T cells, thereby amplifying IL-17-driven
procarcinogenic inflammation (183). In epithelial cells, BFT induces cleavage of E-cadherin, thereby
increasing paracellular permeability and activating B-catenin signaling, ultimately enhancing
proliferative capacity (184). Beyond direct host signaling, BFT+ B. fragilis perturbs the gut microbial
ecosystem by fostering dysbiosis, encouraging the outgrowth of other procarcinogenic taxa, impairing
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mucosal immune defenses, disrupting epithelial barrier integrity, and promoting mucin degradation
(183-186).

Pathogenic E. coli harboring the pks genomic island represents another gut-associated bacterium that is
strongly enriched in CRC tissues and is functionally linked to tumor promotion in preclinical models.
Strains carrying the pks island secrete a family of heat-labile cytolethal distending toxins that colonize
the intestinal mucosa, elicit inflammation, and increase the host's mutational burden (187). Moreover,
pks+ E. coli encodes the genotoxic polyketide-peptide hybrid colibactin, which, upon delivery to
eukaryotic cells, induces DNA double-strand breaks, disrupts the cell cycle, and generates chromosomal
abnormalities. These combined mutagenic and pro-inflammatory effects establish pks+ E. coli as a
potent microbial driver of colorectal tumorigenesis (20, 188).

Among tumor-associated microbes, F. nucleatum and pks+ E. coli are among the most intensively
studied species. Both contribute to colorectal tumorigenesis through intertwined mechanisms of
inflammation, genotoxicity, and immune modulation (187). F. nucleatum promotes chronic
inflammation by activating the NF-kB pathway and inducing cytokines such as IL-6 and TNF-a. Its
adhesin, FadA, facilitates f-catenin signaling, thereby enhancing epithelial proliferation, whereas its
Fap2 protein binds to TIGIT on T cells and NK cells, leading to promoting immune evasion.
Conversely, pks+ E. coli produces colibactin, a genotoxin that causes DNA double-strand breaks and
generates a characteristic mutational signature identified in human colorectal tumors (187). Despite
compelling mechanistic data, the exact oncogenic role of these microbes remains controversial. Some
studies suggest that F. nucleatum colonizes pre-existing lesions rather than initiating cancer, whereas
others show that its depletion reduces tumor burden in animal models. Similarly, colibactin’s
genotoxicity is context-dependent, varying with host DNA-repair capacity and microbial abundance.
Furthermore, both bacteria can reshape the tumor microenvironment, either by amplifying inflammation
or promoting immunosuppression, depending on tumor stage and host immunity. Integrating these
findings suggests that F. nucleatum and pks+ E. coli act not as single “drivers,” but as dynamic
modulators within the complex microbial ecosystem, influencing tumor evolution.

2.6. Hepatocellular carcinoma

Globally, hepatocellular carcinoma (HCC) is recognized as a highly prevalent malignancy and a
foremost cause of cancer mortality (189, 190). Major etiological factors include persistent infection
with the hepatitis B virus (HBV) or the hepatitis C virus (HCV), alcoholic liver disease, and non-
alcoholic fatty liver disease (NAFLD). These conditions drive progressive hepatic injury and
fibrogenesis, culminating in cirrhosis, which constitutes the principal precursor state for HCC
development (191).

Gut microbiome dysbiosis is a characteristic feature of patients with HCC, typically characterized by
an expansion of pathogenic taxa and a depletion of commensal, health-promoting bacteria. In a study
by Zhang et al., hepatocellular carcinoma patients stratified by the Barcelona Clinic Liver Cancer
staging system exhibited progressive alterations in gut microbiota composition, characterized by
increased abundances of FEnterococcus and Enterobacteriaceae and concomitant reductions in
Actinobacteria and Bifidobacterium, with advancing disease severity (192). In a study by Zheng et al.,
a comparative analysis across cohorts of patients with hepatitis, cirrhosis, cirrhosis-associated HCC,
non-cirrhosis-related HCC, and healthy controls revealed that HCC patients exhibited significant
enrichment of Bacteroidetes and Fusobacteria, along with increased gut microbial diversity relative to
the other groups (193). Wang et al. provided compelling evidence for a causal role of gut dysbiosis in
hepatocarcinogenesis. Using fecal microbiota transplantation (FMT) from patients with HCC and
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healthy controls into germ-free and specific-pathogen-free (SPF) mice, they demonstrated that
reconstitution with HCC-associated microbiota induced spontaneous liver inflammation, fibrosis, and
dysplasia, and accelerated chemically induced HCC. Mechanistically, HCC-derived microbiota disrupts
intestinal barrier integrity, facilitating the translocation of viable pathogenic bacteria into the liver and
triggering pro-inflammatory cascades that sustain tumorigenesis. Notably, both murine and human
livers showed enrichment of Klebsiella pneumoniae, and monocolonization with this species
recapitulated the tumor-promoting effects of HCC-FMT, thereby establishing K. pneumoniae as a key
oncogenic driver in HCC (194). Moreover, dynamic crosstalk between bile acids (BAs) and the gut
microbiota has emerged as a pivotal determinant in HCC initiation and progression. Under
physiological conditions, BA metabolism is tightly orchestrated through bidirectional interactions
between host and microbial communities, whereby gut microorganisms modulate BA composition and
BAs act as signaling molecules to preserve hepatic and intestinal homeostasis. However, dysbiosis of
the gut microbiota in chronic liver disease and malignant transformation perturbs BA equilibrium,
thereby fostering hepatic inflammation and fibrogenesis and ultimately driving hepatocarcinogenesis
(195).

The liver maintains a tightly interconnected bidirectional communication with the gut microbiota,
commonly referred to as the gut-liver axis. Microbial communities and their metabolites exert a
profound influence on hepatic homeostasis, while the disruption of this equilibrium, termed dysbiosis,
has been implicated in the pathogenesis of diverse liver disorders (196, 197). Mechanistically, microbial
dysbiosis promotes hepatic injury and inflammation by compromising intestinal barrier integrity,
thereby facilitating bacterial translocation and exposure of the liver to microbial products and pathogen-
associated molecular patterns. For instance, studies have demonstrated that elevated systemic levels of
zonula occludens-1 (ZO-1), a tight junction protein, correlate with increased intestinal permeability,
heightened inflammatory responses, and greater disease severity in patients with HCC (198, 199).
Disruption of intestinal barrier integrity permits the translocation of microbial products, most notably
lipopolysaccharide (LPS), thereby delivering potent pro-inflammatory cues from the gut lumen directly
into the hepatic milieu (197, 198, 200, 201). LPS engages toll-like receptor 4 (TLR4), triggering the
downstream activation of the NF-xB signaling cascade and the consequent secretion of pro-
inflammatory cytokines. Under conditions of dysbiosis, bacterial overgrowth exacerbates the TLR4-
NF-kB-mediated inflammatory axis, thereby fostering persistent intestinal inflammation and driving
hepatocarcinogenesis (202, 203).

2.7. Breast cancer

Breast cancer (BC) is the most frequently diagnosed malignancy among women and, despite
considerable advances in diagnostic approaches and therapeutic strategies, it continues to rank as a
leading cause of cancer-related mortality worldwide (204). Breast cancer represents a heterogeneous
malignancy comprising distinct subtypes with unique epidemiological features (205). Globally, it
accounts for approximately one-third of all cancers diagnosed in women, with mortality contributing to
nearly 15% of cases (206, 207). A multifactorial interplay of genetic predisposition, environmental
exposures, and lifestyle determinants shapes the worldwide distribution of breast cancer. While
incidence rates are typically higher in high-income countries, mortality is comparatively lower due to
the availability of early detection programs and more effective therapeutic interventions, in contrast to
resource-limited settings (208). In recent years, the microbiome has emerged as a novel factor
potentially linked to BC. As a fundamental regulator of human health and homeostasis, the microbiome
exerts broad effects on biological, hormonal, and metabolic pathways. Through these mechanisms, it
may influence tumor initiation, proliferation, and genomic instability in host cells, whereas in other
contexts it can promote apoptosis and tumor suppression (209, 210).
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Complementary work by Smith et al. revealed that the breast tissue microbiome exhibits variability
across racial groups, tumor stages, and molecular subtypes, underscoring its potential role in shaping
disease heterogeneity (211). In a large cohort study, Thompson et al. demonstrated a significant
association between the breast microbiota and host gene expression, identifying bacterial taxa that
correlated with molecular programs governing epithelial-mesenchymal transition (EMT) and cellular
proliferation. More recent investigations have further highlighted the functional importance of
intratumoral microbiota, demonstrating that these microorganisms facilitate breast cancer metastasis by
enhancing cellular resistance to fluid shear stress through actin cytoskeletal remodeling, thereby
promoting tumor cell survival and dissemination (212). Collectively, these findings underscore that
intratumoral microorganisms are not merely incidental but are pervasive within breast cancer tissues,
where they may actively influence disease initiation, progression, and clinical outcome.

Multiple studies have demonstrated that the microbial composition of mammary gland tissue undergoes
distinct alterations between malignant and non-malignant states and across different tumor stages (213,
214). Xuan et al. identified Sphingomonas yanoikuyae as a commensal organism in normal breast tissue,
which was markedly depleted in tumor samples. At the same time, Methylobacterium radiotolerans
emerged as the most significantly enriched bacterium within tumor tissue (215). In an Asian breast
cancer cohort, tumor tissues were found to harbor increased abundances of Propionicimonas,
Micrococcaceae, Caulobacteraceae, Rhodobacteraceae, Nocardioidaceae, and Methylobacteriaceae,
accompanied by a reduction in Bacteroidaceae (216). Notably, disease progression was associated with
a concomitant enrichment of the genus Agrococcus. Furthermore, advanced malignancy was associated
with increased prevalence of Fusobacterium, Atopobium, Gluconacetobacter, Hydrogenophaga, and
Lactobacillus, highlighting a progressive remodeling of the breast tumor microbiome during
oncogenesis (217).

Endogenous estrogen plays a pivotal role in the pathogenesis of breast cancer, particularly in the
postmenopausal setting, where approximately 70% of tumors are classified as estrogen receptor
positive. Before menopause, the ovaries serve as the primary site of estrogen biosynthesis, and
circulating estrogens exert systemic endocrine effects on various target tissues, including the skeletal,
neural, and immune systems (218). Following hepatic metabolism, estrogens and their derivatives
undergo conjugation via glucuronidation and sulfonation, processes that facilitate their excretion
through bile. Although a substantial fraction of these conjugated metabolites is eliminated in urine and
feces, a considerable proportion undergoes enterohepatic recirculation. This is mediated by gut
microbes that express B-glucuronidase activity, which hydrolyze conjugated estrogens to their bioactive
forms, thereby facilitating reabsorption into the systemic circulation. Moreover, intestinal
microorganisms can generate estrogenic compounds or structural mimics from dietary substrates,
further influencing host estrogen homeostasis (218). B-glucuronidase is a central enzymatic component
of the estrobolome, deconjugating estrogens and thereby restoring their bioactive forms for reabsorption
into the systemic circulation.

Recent work refines the “estrobolome” concept, the ensemble of gut-microbial genes (notably [-
glucuronidases) that deconjugate hepatically conjugated estrogens excreted in bile, thereby enabling
enterohepatic reabsorption and altering systemic estrogen exposure relevant to ER+ disease.
Contemporary reviews map estrobolome enzymatic targets/taxa and propose standardized measurement
panels to align microbiome endpoints with breast cancer risk and therapy studies (219, 220). Large
2024-2025 syntheses and narrative updates collectively report links between gut/breast microbial
signatures and tumor risk, subtype, and treatment response, yet emphasize heterogeneity across cohorts
and the current inability to meta-analyze genera consistently associated with outcomes (Table 4).
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Table 4. Recent updates (2024-2025) for breast and prostate microbiome research.

Domain Key 2024-2025 insights Implications

Breast - Estrobolome and Estrobolome targets mapped; 3- Align microbiome endpoints with

estrogen glucuronidase-mediated deconjugation drives | ER+ risk/therapy; prioritize
enterohepatic estrogen recycling; tissue and standardized assays for Estrobolome
multi-kingdom signals revisited with stricter activity.
controls.

Breast - Evidence synthesis 2025 systematic review: 48 studies; Standardize sampling/bioinformatics;
heterogeneity precludes genus-level meta- design longitudinal/interventional
analysis; stool and tissue datasets dominate; studies.

need for harmonized pipelines.

Prostate - Urinary microbiome | Reviews emphasize urinary/tissue Develop validated urine microbiome
microbiomes as non-invasive biomarkers, pipelines for screening and risk
methodology standardization outstanding. stratification.

Prostate - Gut - prostate axis Gut microbes can influence androgen Integrate microbiome-hormone multi-

and hormones pathways and ADT response; lower o- omics; test microbial modulation

diversity correlates with tumor burden; cross- | alongside hormonal therapy.
species models support hormonal crosstalk.

2.8. Prostate cancer

Prostate cancer (PCa) represents the second most frequently diagnosed malignancy in men worldwide.
It remains a leading cause of cancer-related mortality, accounting for approximately 1.6 million new
cases and 366,000 deaths each year (221, 222). Epidemiological and observational studies provide
compelling evidence that unhealthy dietary patterns, excessive alcohol intake, and tobacco use are
strongly associated with an elevated risk of chronic non-communicable diseases, including various
malignancies (223). Nonetheless, the precise contribution of these lifestyle factors to prostate cancer
(PCa) pathogenesis remains inconclusive. Emerging evidence has increasingly underscored the role of
the human microbiota, particularly the gut microbiota (GM), in shaping disease susceptibility and
progression. As a result, microbial communities residing in the gut have garnered considerable attention
for their potential influence on host physiology and their implications in PCa development (224, 225).
In 2018, Liss et al. analyzed the gut microbiota in 133 American men undergoing prostate biopsy and,
for the first time, demonstrated a potential association between the gut microbiome and prostate cancer
(226). In a separate study, Bacteroides massiliensis was found to be more prevalent in the gut microbiota
of Caucasian men with prostate cancer compared to those with benign prostatic hyperplasia (BPH). In
contrast, Faecalibacterium prausnitzii and Eubacterium rectalis were observed at reduced levels (227).

The gut microbiota has recently been conceptualized as an androgen-producing “organ.” Emerging
evidence indicates that microbial metabolites can influence prostate cancer growth and progression,
supporting the existence of a “gut-prostate axis” (228). Androgens are central drivers of prostate cancer,
exerting their effects through binding to the androgen receptor in malignant prostate cells. While
testosterone is primarily synthesized in the testes and dehydroepiandrosterone (DHEA) in the adrenal
glands (229), several studies suggest that the gut microbiota also contributes to androgen biosynthesis
and regulation, thereby potentially shaping the hormonal milieu that governs prostate cancer
development. Matsushita M et al. collected rectal swab samples from Japanese male subjects who were
clinically suspected of having prostate cancer and underwent prostate biopsy. To minimize confounding
factors, individuals with positive biopsy results were excluded, ensuring that only patients without

71



Wang et al. Cancer Biome and Targeted Therapy 2026; 1(1): 61-103

prostate cancer were included in the analysis. In this cohort of elderly men, we investigated the
association between gut microbiota composition and circulating testosterone levels. Microbial
community diversity, assessed using both a- and B-diversity indices, did not differ significantly by
testosterone status. However, taxonomic profiling revealed that specific genera within the phylum
Firmicutes were more prevalent in subjects with higher total testosterone (TT) levels.

Notably, beyond gut dysbiosis, recent studies have profiled the urinary and prostate-tissue microbiomes
as potential noninvasive biomarkers for early detection and risk stratification (230). Reviews summarize
that distinct urinary/gut consortia correlate with incidence, grade, and treatment outcomes; however,
causality remains unresolved, and standardization is needed for specimen collection, sequencing, and
batch control (Table 3). Mechanistically, the gut-prostate axis encompasses microbial effects on
androgen metabolism (e.g., steroidogenic pathways and Sa-reductase activity), immune tone, and tumor
energetics, features implicated in castration resistance and response to androgen-deprivation therapy
(ADT). Longitudinal translational work reports that reduced fecal a-diversity correlates with tumor
burden in hormonotherapy-naive PCa, and that microbial community shifts may modulate hormonal
treatment responses. Parallel reviews call for integrated multi-omics and prospective designs to resolve
directionality and identify therapeutic leverage points.

2.9. Gynecological cancers

Cervical cancer ranks as the fourth most prevalent malignancy among women, accounting for an
estimated 342,000 deaths in 2020. More than 95% of cases are attributable to persistent infection with
human papillomavirus (HPV), a pathogen with exceptionally high prevalence, as over 70% of sexually
active women are estimated to acquire infection during their lifetime (231, 232). Histologically, cervical
cancer is predominantly classified into two subtypes: squamous-cell carcinoma (SCC), which
constitutes the majority, and adenocarcinoma (ADC) (233). Increasing evidence indicates that the
vaginal microbiota exerts a significant influence on both cervical carcinogenesis and the persistence or
clearance of HPV. Brotman, R. M., et al. have reported that Lactobacillus gasseri abundance correlates
with viral clearance, whereas Atopobium spp. is strongly associated with HPV persistence (234).
Moreover, the vaginal microbiota of women with cervical intraepithelial neoplasia or cervical cancer is
characterized by marked depletion of Lactobacillus spp. compared to healthy counterparts, alongside
enrichment of taxa frequently linked to bacterial vaginosis, including Gardnerella, Megasphaera,
Prevotella, Peptostreptococcus, Streptococcus, Sneathia sanguinegens, and Atopobium. These
microbial shifts suggest a dysbiotic microenvironment that may facilitate viral persistence and
malignant transformation (235).

Endometrial cancer (EC), arising from the epithelial lining of the uterine cavity, represents a malignancy
with steadily increasing incidence and associated mortality worldwide. Traditionally, EC has been
stratified into two broad categories. Type I tumors are predominantly driven by unopposed estrogen
exposure, are typically low-grade, more frequently encountered, and generally associated with a
favorable prognosis. In contrast, Type II tumors are largely estrogen-independent, characterized by
high-grade histology, less frequent occurrence, and a comparatively poor clinical outcome (236). In
women with endometrial cancer, alterations in the vaginal microbiota have been observed, characterized
by the presence of specific bacterial taxa, including Firmicutes, Spirochaetes, Actinobacteria (e.g.,
Atopobium), and Proteobacteria (e.g., Bacteroides and Porphyromonas), often accompanied by an
elevated vaginal pH (237). Notably, Atopobium and Porphyromonas have been shown to stimulate the
release of proinflammatory cytokines, including IL-1a, IL-1f, IL-170a, and TNF-a (238).
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Ovarian cancer (OC) represents the second most prevalent malignancy of the female reproductive
system, following endometrial cancer, and predominantly arises in postmenopausal women. The disease
primarily affects individuals aged 55-70 years, with incidence peaking between ages 55 and 59.
Alarmingly, approximately 70% of ovarian cancer cases are diagnosed at advanced stages (FIGO stages
II-1V), reflecting the insidious onset and lack of specific early clinical manifestations (239). Emerging
evidence indicates a potential link between the gut microbiota and ovarian cancer. The gut microbial
community has been shown to influence systemic inflammatory processes and modulate host immune
responses, thereby shaping the ovarian tumor microenvironment and potentially contributing to disease
initiation and progression (240). Microbiome diversity and richness within OC niches are markedly
reduced, with certain taxa exhibiting relative enrichment compared to non-cancerous tissues (241-243).
Notably, Propionibacterium acnes, Acetobacter, members of the phyla Firmicutes, Proteobacteria, and
Fusobacterium demonstrate increased abundance, whereas Lactococcus is significantly diminished
(159, 241-245).

Several of these bacteria have been implicated in shaping a pro-tumorigenic inflammatory
microenvironment by activating inflammatory signaling cascades and oxidative stress responses. By
isolating and culturing specific strains, Huang et al. confirmed the overrepresentation of these genera
and identified P. acnes as the predominant strain in OC. Functional assays further demonstrated its
tumor-promoting role in epithelial ovarian cancer (EOC), wherein P. acnes activates the Hedgehog
pathway and elevates proinflammatory mediators, including TNF-a and IL-1f (246). Additionally, iron-
induced oxidative stress mediated by Acetobacter and Lactobacillus in clear-cell OC drives persistent
inflammation, DNA damage, and oncogene activation, ultimately fostering tumor progression (247).
However, whether these microbial effects are sufficient to initiate tumorigenesis or merely accelerate
preexisting oncogenic processes remains a matter of debate. Notably, conflicting data exist regarding
whether microbial-derived metabolites act as tumor suppressors or promoters, highlighting the context-
dependent nature of host-microbiome interactions. The relationship between cancer and
microorganisms, as described above, is illustrated in the figure below (Figure 3).
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Figure 3. Microbiome signatures and clinical implications across major cancer types. The schematic integrates distinct
microbial taxa or communities associated with individual malignancies. Colored nodes denote microbial taxa enriched in
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specific tumors, while connecting lines represent shared or overlapping microbial associations. Icons indicate key biological
effects, including inflammation, metabolic alteration, immune modulation, or direct oncogenic activity. This integrative
[framework highlights the potential of microbial profiles as diagnostic, prognostic, and therapeutic biomarkers across diverse
cancer types. This figure was created with Figdraw (www.figdraw.com).

3. Microbiome and Cancer Therapy

Probiotics are defined as live microorganisms that, when administered in sufficient amounts, confer
health benefits to the host (248). They are widely used as standardized dietary supplements and are
generally recognized as safe (249). A major mechanism through which probiotics exert beneficial
effects is the production of short-chain fatty acids (SCFAs), particularly butyrate, generated by the
fermentation of polysaccharides by species such as Clostridium butyricum and Akkermansia
muciniphila (250). Butyrate has pleiotropic roles, including regulating immune responses, modulating
intestinal hormone secretion, and regulating lipid metabolism. For example, butyrate has been shown
to induce apoptosis in colon cancer cell lines, suppressing tumor cell growth by upregulating the cyclin-
dependent kinase inhibitor p57, thereby contributing to cell cycle arrest and tumor suppression (251).

Prebiotics are defined as selectively fermented, non-digestible dietary fibers that promote the growth
and activity of probiotic microorganisms. By maintaining intestinal microbial homeostasis and
mitigating gut dysbiosis, prebiotics play a significant role in promoting host health. Their primary site
of action is the colon, where they modulate resident populations of Lactobacilli and Bifidobacteria,
thereby enhancing SCFA production. These SCFAs exert diverse physiological effects, including
reinforcement of the gut epithelial and mucus barriers, regulation of immune responses, modulation of
glucose and lipid metabolism, and influence on energy expenditure and satiety (252).

Beyond their local effects on epithelial integrity, SCFAs, notably acetate, propionate, and butyrate, play
essential roles in systemic immune regulation and metabolic reprogramming. Butyrate acts as a histone
deacetylase (HDAC) inhibitor, promoting the differentiation of regulatory T cells (Tregs) through
enhanced FOXP3 expression and suppressing pro-inflammatory Th17 responses (253). SCFAs also
regulate macrophage polarization, shifting M1-like inflammatory phenotypes toward M2-like, anti-
inflammatory states via G-protein-coupled receptors (GPR41, GPR43) and downstream AMP-activated
protein kinase (AMPK) signaling.

Furthermore, by serving as energy substrates in colonocytes and tumor-associated immune cells, SCFAs
influence metabolic rewiring, including modulation of glycolysis and fatty acid oxidation. Bile acids
(BAs), another major class of microbiota-derived metabolites, exert equally profound effects on tumor
biology. Primary BAs synthesized in the liver are converted into secondary BAs such as deoxycholic
acid (DCA) and lithocholic acid (LCA) by intestinal bacteria (253). Collectively, SCFAs and BAs
exemplify how microbial metabolites link gut microbial ecology with host immune-metabolic networks,
influencing both tumor initiation and therapeutic response.

The immune system plays a central role in tumor surveillance and suppression, and strategies that
harness its activity have become pivotal in cancer therapy. Among these, immunotherapy has emerged
as a transformative treatment modality across diverse malignancies. In particular, immune checkpoint
blockade (ICB) has gained prominence, employing monoclonal antibodies that target inhibitory
pathways, such as programmed cell death protein 1 (PD-1), its ligand PD-L1, and cytotoxic T-
lymphocyte-associated antigen 4 (CTLA-4). By releasing the brakes on T-cell activation, these agents
enhance antitumor immune responses and have demonstrated durable clinical benefits in subsets of
patients (254). Hua D et al. demonstrated that anti-PD-L1 therapy, when combined with Clostridium
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butyricum (CB) and Akkermansia muciniphila (AKK), markedly suppressed colitis-associated
colorectal cancer (CRC) progression. This combination not only attenuated excessive activation of
CD8" T cells and macrophages within the inflammatory milieu but also enhanced CRC cell
responsiveness to anti-PD-L1 treatment. Collectively, these findings suggest that CB and AKK exert
direct antitumor effects, thereby improving the efficacy of immune checkpoint blockade and providing
a promising therapeutic approach (255). Specific commensals, such as Bifidobacterium and
Akkermansia muciniphila, enhance anti-PD-(L)1 or anti-CTLA-4 responses by activating dendritic
cells, improving antigen presentation, and promoting the infiltration of cytotoxic CD8* T cells into
tumors. In contrast, broad-spectrum antibiotics or germ-free conditions markedly reduce ICI efficacy
and alter the tumor immune microenvironment toward an immunosuppressive phenotype (Table 5).

Table 5. Representative studies on microbiome-ICI interactions.

Study type Cancer type Intervention/ Microbiome features | Immune Clinical
Exposure effects outcome
1 DC activation,
Preclinical Melanoma Bifidobacterium 1 CD8" T-cell 1 IFN-y Enhanced
(mouse) + anti-PD-L1 infiltration response tumor control
Preclinical Multiple Broad-spectrum | Microbial diversity | Antigen Reduced ICI
(mouse) antibiotics before presentation, T | efficacy
ICI MDSCs
Observational Melanoma/Lu | Baseline gut 1 Akkermansia, 1 Th1/CTL Improved
ng/RCC microbiome Faecalibacterium signatures ORR/PFS/O
S
. Melanoma FMT from Microbiome shifted to | 1 T-cell Partial
Interventional . . .
(phase I) responders responder-like pattern | activation responses in
+ anti-PD-1 resistant
Preliminary
Interventional RCC (early- SCFA-producing 1 Clostridium spp. Enhanced T- PFS benefit
phase) probiotic + ICI abundance cell function (ongoing)

Across melanoma, NSCLC, and renal cell carcinoma cohorts, higher baseline gut microbial diversity
has been consistently associated with improved ICI responses and longer progression-free or overall
survival. Enrichment of Akkermansia, Bifidobacterium, and Faecalibacterium species correlates with a
greater Th1 and cytotoxic T-cell signature.

In contrast, the dominance of oral-derived or potentially pathogenic taxa (e.g., Enterococcus faecalis)
is linked to resistance. Concomitant exposure to antibiotics within +60 days of ICI initiation reduces
clinical benefit, while prolonged use of proton-pump inhibitors has been associated with microbiome
perturbation and diminished outcomes (254). These associations underscore the microbiome as a
potential predictive biomarker for immunotherapy efficacy.

Chemotherapy remains a cornerstone of cancer treatment; however, its bidirectional interactions with
the host microbiome are increasingly recognized. On one hand, chemotherapeutic agents disrupt the
intestinal microbial community, often exacerbating gastrointestinal toxicity and systemic
complications, particularly in immunocompromised patients. Conversely, the microbiota can
metabolize drugs, thereby modulating their pharmacokinetics, efficacy, and toxicity (161, 256-260).

Emerging evidence highlights three principal roles of the gut microbiota in this context: enhancing
therapeutic efficacy, augmenting antitumor activity, and mitigating adverse effects. In some cases, the
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microbiota itself may serve as a therapeutic target to mitigate chemotherapy-associated gastrointestinal
toxicity (261). Fecal microbiota transplantation (FMT) is a therapeutic strategy in which functional
microbiota derived from donor feces are introduced into the gastrointestinal (GI) tract of patients to
alter and restore gut microbial composition. Initially, FMT was recognized for its remarkable efficacy
in treating Clostridioides difficile infection (CDI) (262).

Since then, its clinical application has expanded considerably, offering new therapeutic avenues for a
broad spectrum of diseases associated with dysbiosis of the gut microbiome (263). Although the precise
molecular and cellular mechanisms underlying FMT remain incompletely elucidated, it is thought to
involve direct interactions between the donor microbiota and the host, influencing mucosal barrier
integrity, immune regulation, and systemic physiology. Preclinical studies further suggest that FMT
accelerates recovery in chemotherapy-treated mice, underscoring its potential to restore microbial
homeostasis, enhance chemotherapeutic efficacy, and mitigate inflammation and toxicity (264, 265)
(Figure 4).
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Figure 4. Microbiome modulation strategies in cancer prevention and therapy. (4) Probiotics and dietary interventions
modulate gut microbial composition and promote the production of short-chain fatty acids (SCFAs), which regulate immune
responses, intestinal hormone secretion, and lipid metabolism. (B) Microbiome-mediated immune modulation influences
antitumor immunity by modulating T-cell receptor signaling and immune checkpoint pathways, including PD-1/PD-L1
interactions between T cells and tumor cells. (C) Fecal microbiota transplantation (FMT) transfers gut microbiota from
healthy donors to patients, reconstituting microbial communities and enhancing responses to cancer therapies.
Collectively, microbiome-targeted interventions, including antibiotics or bacteriophage therapy, probiotics and prebiotics,
dietary modulation, and FMT, represent translational strategies that link microbial ecology to precision oncology and improve

responses to immunotherapy, chemotherapy, and radiotherapy (Table 6). Figure created with Figdraw (www.figdraw.com).
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Therapy Microbial Influence Key Findings Clinical Implication
Butyrate's regulatory effects | Improving gut health, boosting the
Probiotics Clostridium, Butyricum, on immune response, immune system.
prebiotics Lactobacilli, Bifidobacteria intestinal hormone
(251, 252) secretion, and lipid
metabolism. Promotes
resistance.
Butyrate's regulatory effects | Enhance antitumor immune
Immunotherapy Clostridium butyricum and on immune response, responses.

intestinal hormone
secretion, and lipid
metabolism. Promotes
resistance.

Akkermansia muciniphila
(255)

Restore microbial homeostasis,
enhance chemotherapeutic
efficacy, and attenuate
inflammation and toxicity.

Fecal microbiota
transplantation

Clostridioides difficile (266)

Despite promising mechanistic and clinical findings, significant barriers hinder the translation of
microbiome research into oncology practice. One major challenge is inter-individual variability; the
human microbiome is highly dynamic and influenced by host genetics, diet, age, medication use, and
comorbidities, all of which confound reproducibility across studies. Geographic and cultural differences
further shape microbial composition, resulting in region-specific taxa that limit the generalizability of
predictive biomarkers and therapeutic interventions identified in single populations. Additionally, the
absence of standardized methodologies, including differences in sample collection (stool vs. tissue vs.
urine), storage, sequencing depth, bioinformatic pipelines, and statistical normalization, remains a
critical obstacle to meta-analysis and regulatory acceptance. Variability in analytical parameters can
generate artificial discrepancies even when studying the same cancer type.

4. Clinical Implications of Microbiome Research in Oncology

The integration of microbiome science into clinical oncology presents transformative opportunities for
diagnosis, prognostication, and personalized treatment. Microbial signatures from stool, tissue, or blood
can serve as non-invasive biomarkers for early detection, risk stratification, and therapeutic monitoring.
In parallel, understanding how specific taxa and metabolites influence immune activation, drug
metabolism, and systemic inflammation enables the development of microbiome-informed precision
medicine. For example, baseline gut diversity and enrichment of beneficial commensals correlate with
improved outcomes in patients receiving immune checkpoint inhibitors, while dysbiosis can predict
resistance or treatment-related toxicity. Consequently, microbiome modulation strategies, including
dietary interventions, probiotics, prebiotics, FMT, and LBPs, are emerging as adjunctive tools to
optimize therapeutic efficacy and minimize adverse effects. To translate these advances safely and
effectively, prospective clinical trials with standardized sampling, longitudinal follow-up, and multi-
omics integration are essential. Ultimately, incorporating microbiome assessment into routine oncology
practice could refine patient selection, guide the development of combination therapies, and improve
overall clinical outcomes.

Although mounting evidence connects microbial dysbiosis to carcinogenesis, much of the current
literature remains correlative and heterogeneous. Variability in study design, sequencing methodology,
and statistical control contributes to inconsistent results. Moreover, many mechanistic conclusions are
drawn from single-species or animal models, which may not fully capture the complexity of human
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tumor-microbe ecosystems. Future research should integrate multi-omics, spatial, and temporal data to
discern causal mechanisms and clarify whether the microbiome acts as a driver, a modulator, or merely
a bystander in tumor evolution.

Discussion

Although substantial evidence links the microbiome to cancer development, most existing studies are
associative rather than causal. Establishing the causal link between microbial alterations and
oncogenesis remains a critical research priority. Future investigations should utilize longitudinal cohort
designs, mechanistic experiments in gnotobiotic or organoid models, and rigorously controlled clinical
interventions, such as fecal microbiota transplantation (FMT) or targeted microbial modulation, to
clarify cause-and-effect relationships. Additionally, standardized sampling, contamination control, and
multi-omics integration are essential for improving reproducibility and comparability across cohorts.

A significant challenge remains in translating microbiome research into clinical oncology. Although
microbial signatures show promise as biomarkers for early detection and prediction of treatment
response, their integration into precision oncology requires validated analytical pipelines, regulatory
standards, and multidisciplinary collaboration. Bridging the gap between correlation and causation will
ultimately allow the microbiome to transition from a descriptive hallmark of cancer to a targetable
component of tumor biology and therapeutic innovation.

Several key research questions require systematic investigation: (1) Causation versus correlation: Most
current findings are associative. Disentangling causal mechanisms necessitates longitudinal follow-up,
interventional trials, and mechanistic validation in gnotobiotic or organoid models. Advanced causal
inference methods, such as Mendelian randomization, may also clarify the direction of causation. (2)
Common versus cancer-specific microbial signatures: It remains uncertain whether shared microbial
patterns drive carcinogenesis across multiple tumor types or if each malignancy possesses a unique
microbiome configuration. Large-scale, cross-cancer microbiome atlases and meta-analyses are needed
to address this issue. (3) Standardization and reproducibility: Methodological variability, including
sampling strategies, sequencing depth, contamination control, and bioinformatics pipelines, continues
to impede cross-study comparability. Establishing global standards for microbiome detection and
reporting is essential to ensure data reliability. (4) Clinical translation: The application of microbiome
insights to diagnostic and therapeutic practice will require validated biomarkers, safe and effective
intervention strategies, and integrative models that combine microbial, genomic, and immunologic
features. Rigorous clinical trials are necessary to determine how microbiome modulation can enhance
responses to immunotherapy, chemotherapy, and targeted therapy. Addressing these questions will
advance microbiome-oncology research from a correlation-driven, observational approach to a
mechanistically informed, clinically actionable discipline.
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