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Abstract

Precision oncology is being transformed by the integration of advanced machine learning (ML) methods
and extensive biomedical data from genomics, imaging, proteomics, and clinical records. ML
techniques, including supervised, unsupervised, deep learning, and reinforcement learning, have
progressed from experimental tools to robust systems that identify clinically actionable biomarkers,
refine prognosis, and guide personalized therapies. Deep learning models now achieve expert-level
performance in tumor detection, grading, and outcome prediction from digital pathology and
radiological images, improving diagnostic precision and therapeutic decision-making. Multi-modal and
graph-based fusion networks enable the creation of patient-specific digital twins that simulate treatment
responses and optimize therapeutic strategies. Data-centric methodologies such as federated learning,
differential privacy, and synthetic data generation address challenges related to data sharing and patient
privacy. Additionally, large language models trained on biomedical literature are increasingly
integrating structured and unstructured clinical data, thereby fostering hypothesis generation and natural
language—based decision support. However, challenges, including data heterogeneity, interpretability,
algorithmic bias, and regulatory and ethical constraints, remain. Rigorous benchmarking, explainable
Al methods, and prospective multi-center trials are essential for validating ML tools and establishing
clinician trust. This review discusses recent developments in next-generation ML for precision
oncology.
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1. Introduction

The landscape of oncology has undergone a profound transformation over recent decades, shifting from
an empirical discipline to one increasingly guided by both molecular and computational methodologies
(1, 2). Central to this evolution is precision oncology, also referred to as personalized oncology, a
paradigm aiming to customize cancer diagnosis, prognosis, and treatment to the unique biological
attributes of individual patients and their tumors (3). This personalized approach contrasts starkly with
the conventional "one-size-fits-all" model, which often results in variable therapeutic efficacy and
avoidable toxicities (4). This transformation has been catalyzed by successive waves of high-throughput
technologies, including next-generation DNA/RNA sequencing, single-cell and spatial omics,
quantitative mass spectrometry proteomics, high-content imaging, and whole-slide digital pathology,
which generate petabyte-scale, multimodal datasets (5). These repositories illuminate the molecular
circuitry underlying oncogenesis and drug resistance; however, their dimensionality, heterogeneity, and
noise exceed the analytical capacity of classical statistics or unaided human reasoning.

Machine learning (ML), a major branch of artificial intelligence (Al), provides the algorithmic
machinery required to convert such complex data into actionable knowledge. By iteratively learning
from examples rather than explicit programming, ML systems discover latent structure, derive
discriminative features, and yield predictive or generative models that can be continuously refined as
new data accrue. The convergence of high-resolution biomedical data with ML has introduced a new
phase of precision oncology characterized by more accurate diagnostics, finer-grained prognostication,
and data-guided therapy selection (6). Methodologically, the field has progressed from early supervised
classifiers that operated on hand-crafted features to deep neural networks capable of end-to-end
representation learning directly from raw images, sequences, or signals. Unsupervised and self-
supervised paradigms now uncover tumor subtypes de novo, while reinforcement learning frameworks
optimize sequential decisions such as radiotherapy beam arrangement or adaptive dosing schedules (7).
Generative adversarial networks and diffusion models produce synthetic multi-omics records or
imaging studies to augment limited cohorts and to simulate patient-specific drug responses, whereas
emerging “digital twin” platforms integrate mechanistic and statistical models to predict disease
trajectories and test virtual interventions (8). Building on these methodological advancements, ML
applications have rapidly transitioned into clinical practice, influencing numerous aspects of cancer
care.

Clinically, ML applications have profoundly impacted the entire cancer care continuum. In diagnostics,
ML algorithms have achieved expert-level performance in recognizing subtle malignancy-associated
patterns in radiologic and digital pathology images (9, 10). Prognostically, ML models integrate various
data modalities to stratify patients into precise risk profiles and predict outcomes more accurately than
traditional scoring systems. Therapeutically, ML facilitates personalized treatment selection by
leveraging extensive molecular profiles and historical clinical responses, thereby improving therapeutic
efficacy and minimizing side effects (11-14). Despite notable achievements, integrating ML into routine
oncology practice faces substantial challenges. Technical barriers include data heterogeneity,
interoperability issues, and the need for rigorous validation across diverse patient populations. Model
interpretability remains a technical issue, particularly with complex "black-box" algorithms that lack
transparency (15). Ethical considerations, such as algorithmic bias, data privacy, and equitable access,
further complicate the translation of ML innovations from research environments into clinical practice
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(11). To navigate these complexities, it is essential to analyze specific methodologies and their
applications within the evolving oncology landscape.

This review provides an analysis of current applications and emerging trends in ML-driven precision
oncology. We begin by discussing methodologies relevant to oncology, then examine data modalities
and integration techniques. Subsequently, we illustrate how these approaches are being translated into
specific clinical applications across different cancer types and treatment modalities, highlighting the
progression from foundational methods to direct impacts on patient care.

2. Catalysts for the Adoption of Machine Learning in Oncology

Over the past quarter-century, ML in oncology has progressed from proof-of-concept classifiers built
on tens of samples to regulated software that now guides diagnostic and therapeutic choices for millions
of patients. The seminal demonstration that gene-expression signatures could discriminate acute
myeloid from acute lymphoblastic leukemia (AML vs ALL) using a handful of microarray profiles
marked the field’s starting point. Yet, the study’s training set of 38 cases and its absence of external
validation typified the limitations of early, feature-engineered, supervised models (16). Several
convergent developments catalyzed the transition to clinically applicable ML. First, exponential growth
in affordable graphical-processing-unit (GPU) and cloud computing provided the raw throughput
required for deep architectures. Second, data standardization initiatives, such as The Cancer Genome
Atlas Program (TCGA), the AACR Project GENIE (17), and the NHS/Genomics England 100,000
Genomes initiative (18), have created diverse, high-quality training corpora that mitigate overfitting
and enable cross-institutional benchmarking. Third, common data models and interoperable APIs
integrated imaging, molecular, and clinical records, allowing multimodal learning pipelines to be
embedded within hospital information systems (19).

3. Supervised learning approaches and applications

Supervised learning remains the mainstay of ML deployments in precision oncology because most
clinically actionable tasks, such as diagnostic categorization, risk stratification, and response prediction,
can be framed as classification or regression problems. In supervised learning, algorithms are trained
on labeled datasets in which the desired output is known, enabling the model to learn mappings from
input features to target variables (20-23). Early work relied on feature-engineered algorithms, such as
support vector machines (SVMs), random forests (RFs), and gradient boosting machines (GBMs) (24).
For instance, SVMs have demonstrated efficacy in classifying cancer subtypes based on gene
expression profiles (25). At the same time, RFs have been employed for feature selection in high-
dimensional genomic data to identify clinically relevant biomarkers (26). More recently, extreme
gradient boosting (XGBoost) models have delivered state-of-the-art prognostic nomograms that
integrate clinicopathological and multi-omic variables. For example, an XGBoost-based bladder cancer
model improved the prediction of three- and five-year cancer-specific mortality compared with
conventional Cox models in a 10,000-patient multicenter registry (27).

The advent of deep supervised architectures expanded supervised learning from tabular omics to raw,
high-dimensional modalities. Convolutional neural networks (CNNs) now interrogate radiographs,
computed tomography volumes, and whole-slide histology at sub-human error rates, provided that the
training data are appropriately curated and stain-normalized (28). In digital pathology, CNN-based
assistants standardize quantitative immunohistochemistry (IHC). Large, multi-institutional datasets
with >185,000 breast cancer images for Ki-67/ER/PR/HER2 have demonstrated that automated scoring
substantially reduces interobserver variability relative to manual assessment (29). Comparable gains
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have been reported for PD-L1 evaluation in non-small cell lung carcinoma, where Al algorithms achieve
higher consistency and reproducibility than pathologists across different antibody clones and scoring
thresholds (30). These tools underpin clinical decisions on checkpoint-inhibitor eligibility and HER2-
targeted therapy, illustrating the direct translational impact of supervised learning.

Nevertheless, supervised pipelines continue to face persistent challenges (Figure 1). High predictive
accuracy demands large, well-annotated datasets that are costly to assemble. Models trained on
homogeneous cohorts may overfit and fail to generalize across different ancestries or data acquisition
platforms (31-33). This risk is exacerbated by class imbalance, particularly for rare mutational subtypes.
Moreover, the opaque “black box” logic of many deep ensembles complicates biological interpretation
and regulatory scrutiny, necessitating complementary explainability frameworks, rigorous external
validation, and prospective, multi-center trials before supervised models can be entrusted with high-
stakes oncological decisions (34, 35).
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4. Unsupervised learning for pattern discovery

Unsupervised learning approaches have emerged as complements to supervised methods in precision
oncology, particularly for exploratory data analysis, patient stratification, and the discovery of novel
disease subtypes (Figure 2). Unlike supervised learning, unsupervised methods do not require labeled
outcomes; instead, they focus on identifying intrinsic patterns, structures, and relationships within data.
Classical clustering algorithms, such as k-means, agglomerative or spectral hierarchical clustering, and
density-based methods, including DBSCAN, were initially used to partition gene-expression matrices,
culminating in the seminal identification of the luminal A, luminal B, HER2-enriched, and basal-like
breast cancer subtypes, which display distinct biology and treatment sensitivity (36). Contemporary
studies extend this strategy to semi-supervised learning using an autoencoder (37).

Dimensionality reduction techniques such as principal component analysis (PCA), t-distributed
stochastic neighbor embedding (t-SNE), and uniform manifold approximation and projection (UMAP)
are widely used tools for visualizing and analyzing high-dimensional oncological data. PCA remains a
workhorse for bulk omics, but nonlinear techniques, such as t-SNE and UMAP, are now standard for
visualizing single-cell and spatial-omics data, where they preserve local neighborhood structure and
expose rare cell states or micro-environmental niches that are invisible in higher dimensions (38).
Interactive visual analytics platforms built upon these embeddings facilitate intuitive exploration by
clinicians and biologists.
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Deep representation learning, such as autoencoders (including variational and graph variants),
compresses multi-modal cancer data into low-dimensional latent spaces that disentangle tumor-intrinsic
biology from technical noise. Latent factors extracted from RNA-seq or methylation matrices often
correspond to hallmark pathways and have been shown to stratify patients independently of traditional
staging systems (39). In spatial transcriptomics, coupled autoencoder—graph frameworks
simultaneously model gene co-expression and physical proximity to reconstruct tissue architecture and
identify spatially organized cell communities (40). Generative adversarial networks (GANs) and, more
recently, diffusion models synthesize realistic histopathology patches, radiographic volumes, and even
multi-omics profiles (41, 42). These synthetic cohorts mitigate class imbalance and data scarcity
problems, enhancing the performance and calibration of downstream supervised classifiers without
exposing patient-identifiable information. Because purely unsupervised clusters may lack immediate
clinical relevance, recent work couples representation learning with sparse outcome labels, such as
survival-guided clustering or outcome-constrained variational autoencoders, to align latent structure
with prognostic endpoints while retaining the data-efficiency advantages of unsupervised learning (43).
These approaches hold promise for rare tumors where annotated cohorts are intrinsically small.

Taken together, unsupervised and semi-supervised methodologies complement supervised pipelines by
exposing hidden biological heterogeneity, informing biomarker discovery, and generating synthetic
data to strengthen model generalizability, thereby expanding the evidentiary foundation of precision
oncology. However, unsupervised learning is not without its specific limitations. A primary challenge
is that the generated clusters or latent features may not always align with clinically relevant endpoints,
requiring further validation to ensure their utility (44). Furthermore, results can be sensitive to algorithm
and hyperparameter choices, leading to reproducibility issues (45). Interpreting what these data-driven
subtypes represent biologically also requires downstream analysis that bridges the gap between
computational patterns and actionable clinical observations (46).
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5. Deep learning architectures in precision oncology

Building upon the core learning paradigms of supervised, unsupervised, and reinforcement learning,
the subsequent discussion is organized around the specific deep learning (DL) architectures that have
proven vital in oncology. It is essential to note that DL is not a separate paradigm but rather a suite of
multi-layered architectures that have redefined the capabilities within each paradigm. Its ability to
process unstructured, high-dimensional biomedical information, such as radiological volumes, whole-
slide images, and nucleotide sequences, has positioned DL as a major driver of recent progress in
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precision oncology, often complementing or outperforming traditional feature-engineered pipelines in
terms of accuracy and clinical applicability (47-49). The following will detail these key architectures,
including CNN, Recurrent Neural Networks (RNN), Transformers, and Graph Neural Networks
(GNN), and their transformative applications.

CNNs have demonstrated remarkable success in cancer imaging applications (50). Across cross-
sectional CT, MR, and PET, as well as digital pathology, CNN-based detectors have demonstrated
performance comparable to that of subspecialists for tumor localization, grading, and survival
prediction (51). In histopathology, weakly supervised CNNs have demonstrated strong agreement with
pathologist assessments in PD-L1 tumor-proportion scoring, achieving area under the curve (AUC)
values above 0.90 and intraclass correlation coefficients around 0.96 in extensive validation studies,
thereby reducing inter-observer variability that complicates immunotherapy triage (52, 53).

Recurrent neural networks (RNNs) and their gated variants, such as long short-term memory (LSTM)
models, are widely used to model temporal structure in clinical data, including event ordering, treatment
sequences, and symptom evolution. Several studies have demonstrated that LSTM-based survival
models can effectively capture longitudinal risk dynamics and outperform traditional Cox approaches
in oncology settings. For example, Qu et al. showed that an LSTM-Cox architecture achieved higher
prognostic accuracy than standard Cox regression in predicting cancer survival outcomes, highlighting
the utility of recurrent deep learning methods for sequence-based clinical prediction tasks (54).

Similar architectures predict symptom exacerbation months in advance from electronic health record
time series, enabling preemptive supportive care (55). Transformer-based architectures, initially
developed for natural language processing tasks, have recently been adapted for various oncological
applications. Vision Transformers (ViTs), which replace convolution with self-attention, are
increasingly used to underpin organ-site-agnostic cancer-screening tools and outperform ResNet
baselines in brain-tumor MRI classification (56, 57). Sequence-focused Transformers pre-trained on
billions of nucleotides achieve state-of-the-art pathogenic-variant prioritization and transfer efficiently
to low-label somatic-mutation tasks (58).

GNNs represent another emerging DL architecture in precision oncology. These architectures are
designed to process graph-structured data, making them well-suited to modeling complex biological
networks, such as protein-protein interactions, gene regulatory networks, and drug-target interactions.
Explainable GNNs, such as XGDP, accurately predict ex vivo drug responses while simultaneously
highlighting mechanism-of-action subnetworks (59). Furthermore, modular graph architectures also
improve ICso prediction across more than 1,000 cell-line-compound pairs compared with fully
connected networks (60). Reflecting the rapid advancements in this area, more recent studies have
employed explainable GNN frameworks to integrate multi-omics data with protein interaction
networks, thereby improving the identification of cancer driver genes (61). Furthermore, transformer-
based models that leverage graph representation learning are now being used to interpret the importance
of multi-omic features and network structures, achieving state-of-the-art performance in cancer gene
prediction (62). These advanced applications suggest the growing role of GNNs in creating more
interpretable predictive models for precision oncology.

Despite their impressive performance, DL approaches in oncology face several persistent challenges
(Figure 3). These include data dependency, computational demands, and interpretability. Strategies
such as federated learning and transfer learning mitigate the limitations of small cohort sizes, while
sparsity-inducing methods and knowledge distillation reduce inference costs. Interpretability efforts can
be broadly categorized into three methodological approaches: feature attribution (e.g., saliency maps,
Grad-CAM), counterfactual reasoning (e.g., contrastive explanations), and inherently interpretable
architectures (e.g., attention-based or prototype-driven models). While these methods help uncover
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model reasoning, their reliability remains an open question, as studies have shown that visual
explanations may vary with input perturbations or model architecture (63-65). Therefore, caution is
warranted in clinical deployment. For clinician-facing applications, we advocate using explainability
outputs as supportive cues rather than decision-makers, and suggest that explanations be accompanied
by standardized uncertainty metrics where possible. These interpretability tools are increasingly
recognized as prerequisites for regulatory approval and clinician trust. Together, these innovations aim
to transform DL from an experimental powerhouse into a transparent, clinically deployable component
of precision-oncology workflows (66, 67).
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* Imaging * RNNs/LSTMs
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highlights system-level challenges that constrain clinical deployment, including the need for large, diverse datasets,
computational costs, and limited interpretability of complex model decisions.

Although most clinical DL applications in oncology are supervised, aimed at predicting expert-labeled
outcomes, other paradigms play supporting roles. Self-supervised learning is widely used to pre-train
models on unlabeled data, while reinforcement learning is an emerging approach for optimizing
treatment strategies. Table 1 focuses on the primary DL architectures, summarizing their distinct
strengths and applications.

Table 1. A comparative overview of key DL architectures in precision oncology.

Architecture Core Strength Common Data Primary Task in Oncology
CNN Analyzing visual Medical scans (CT, MRI) Diagnosis: Finding and grading tumors.
patterns and spatial data. Digital microscope slides Prognosis: Predicting outcomes from
images.

Treatment Selection: Scoring biomarkers.

RNN/LSTM  Understanding Electronic Health Records (EHRs) Prognosis: Forecasting future events like
sequences and how data Patient symptom timelines cancer recurrence.
evolves over time. Symptom Management: Predicting

symptom flare-ups.

Transformer  Identifying context and Genomic sequences (DNA, RNA) Screening & Diagnosis: Classifying
relationships in long Medical images disease from complex data.
sequences. Risk Assessment: Pinpointing high-risk

genetic mutations.
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GNN Modeling complex Biological networks (protein Treatment Selection: Predicting a tumor's
networks and interactions) response to a drug.
relationships between ~ Molecular structures Biomarker Discovery: Finding influential
entities. genes in cancer pathways.

6. Reinforcement learning frameworks for treatment optimization

Reinforcement learning (RL) addresses sequential decision-making under uncertainty, a fundamental
feature of cancer therapy, where clinicians balance tumor control against cumulative toxicity while
adapting to evolving patient physiology (68). In RL, an agent observes the current state, such as tumor
burden, hematologic indices, and pharmacodynamic markers, executes an action like dose adjustment,
drug switch, or schedule adjustment, and receives a reward that quantifies clinical benefit or harm. By
iteratively maximizing the long-term expected reward, the agent converges on a dosing or scheduling
policy tailored to the individual (69).

The application of RL in precision oncology is still in its early stages, but it shows considerable promise
for several use cases. Proof-of-concept studies have cast standard regimens as Markov-decision
processes and used Q-learning or actor—critic algorithms to refine chemotherapy or radiotherapy
schedules, demonstrating the capacity to maintain oncological control (70-72). Model-free deep RL has
likewise generated patient-specific adaptive-dose policies for multi-cycle chemotherapy, outperforming
oncologist-defined heuristics in retrospective simulations (73). More recently, RL has been investigated
for optimizing immunotherapy and targeted therapy approaches, which often involve complex decision-
making regarding treatment initiation, duration, and combinations (74). The dynamic nature of RL
makes it well-suited to adapting treatment strategies based on evolving patient responses and biomarker
profiles, thereby enabling more personalized and effective cancer care (75).

The integration of RL with patient-specific digital twins represents a particularly promising direction
for precision oncology. Coupling RL with physics- and biology-informed digital twins allows safe
policy exploration. Patient-specific ordinary differential equation models of tumor-immune eco-
dynamics or pharmacokinetic/pharmacodynamic (PK/PD) systems serve as simulators, allowing RL to
test millions of dosing trajectories without patient risk, and then transfer the learned policy to the clinic
with continual online updating (71, 76). Furthermore, Deep RL planners have been applied to beam-
angle selection and adaptive fractionation, achieving organ-at-risk sparing comparable to expert
physicists while reducing planning time by an order of magnitude (77). Multi-agent RL further
coordinates combined-modality regimens, jointly selecting radiotherapy dose and concurrent systemic
therapy (7). These approaches could reduce the risks associated with trial-and-error treatment
adjustments and accelerate the identification of optimal therapeutic strategies for individual patients.

The clinical implementation of RL in precision oncology faces challenges that temper a purely
optimistic outlook. Many studies suggest that RL algorithms are highly sample-inefficient, requiring a
volume of interactions that is impractical in clinical settings defined by small patient cohorts and
delayed outcomes (78). Moreover, RL training is often unstable, with performance varying substantially
across different model initializations and reward specifications, which undermines reproducibility.
Negative findings from simulated treatment tasks indicate that naive application of RL can yield unsafe
or clinically irrelevant policies, particularly when validation is limited (79). Successful clinical
translation is, therefore, contingent upon substantial methodological advances. This includes the
development of high-fidelity patient models to serve as reliable simulators, the enforcement of safe-
exploration constraints to prevent deleterious dose excursions, and the creation of transparent policy
explanations for regulatory acceptance (80, 81). Addressing technical hurdles, such as sparse rewards
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and covariate shift between retrospective training data and prospective deployment, remains essential
(82). These limitations indicate that current RL applications in oncology are largely experimental.
However, as techniques such as model-based RL and offline RL. mature in tandem with multi-omic
monitoring and real-time digital twin updates, RL may yet transform oncology treatment planning from
empirical schedule selection to a continuous, data-driven control process optimized for each patient’s
evolving biology and risk profile. The key applications, advantages, and limitations of Reinforcement
Learning (RL) in precision oncology are summarized in Table 2.

Table 2. A concise overview of the key Reinforcement Learning (RL) frameworks, their specific
applications, advantages, limitations, and future directions in cancer treatment optimization.

Application RL Approach Example/Description Advantages Limitations Future Directions

Chemotherapy & Q-learning, Dose/schedule adjustment, Maintains tumor Small cohorts, Offline RL, safe

Radiotherapy Actor-Critic, beam-angle selection control, reduces  delayed rewards exploration
Deep RL planning time algorithms
Immunotherapy & Model-free RL Treatment initiation, Potential for Model instability, Digital twins
Targeted Therapy duration, combination personalizing lack of clinical ~ updated with multi-
decisions complex regimens validation omic data
Patient-Specific ~ Model-based PK/PD simulations, tumor- Enables safe Dependent on High-resolution
Digital Twins RL immune eco-dynamic testing in a virtual simulator digital twin + real-
models environment accuracy time data streaming
Multi-agent RL ~ Cooperative ~ Radiotherapy + systemic ~ Coordinates Policy instability, Explainable multi-
RL therapy combinations across combined data scarcity agent policies
modalities
General - - - Sample Explainable RL,
Challenges inefficiency, standardization

sparse rewards,
covariate shift

7. Data modalities in precision oncology

The modern practice of precision oncology applies ML algorithms to extract clinically actionable
signals from a growing spectrum of biomedical data. Several data modalities, including multi-omics,
medical imaging & digital pathology, and EHRs, along with multi-modal integration, are required for
precision oncology. High-throughput whole-genome and whole-exome sequencing (WGS/WES) have
revealed millions of somatic variants per tumor, enabling ML classifiers to distinguish driver from
passenger mutations and to prioritize therapeutic targets (83, 84). Deep neural networks have further
improved the identification of mutational signatures associated with smoking, UV light, or defective
DNA-repair pathways, and have begun to outperform traditional probabilistic approaches (85, 86). For
transcriptomics, unsupervised clustering of RNA-seq profiles underpinned the molecular taxonomy
used by TCGA; subsequent autoencoder and variational inference models generate latent factors that
correlate more strongly with survival and therapy response than individual genes (37, 87). Epigenomic
assays, such as DNA methylation arrays, have led to the development of RF and GBM classifiers that
inform brain-tumor diagnostics (the “Heidelberg classifier””) and are increasingly being interpreted with
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explainable Al (88). True systems-level insight comes from integrating multiple layers of information.
Network-based pipelines (INF, SNF) and factor-analysis frameworks (MOFA+) capture cross-omics
correlations and consistently outperform single-layer models in prognostic tasks (89-91). Recent review
of catalogue multi-omics algorithms, including Bayesian and transformer variants that incorporate
pathway priors to improve biological plausibility (92).

Mass spectrometry proteomics now quantifies more than 10,000 proteins per tumor. ML feature-ranking
pipelines have revealed panels that discriminate between high-grade serous ovarian carcinoma and
benign tissue and predict survival (93). Targeted MS assays are moving toward clinical validation,
supported by reviews detailing workflow standardization (94). DL frameworks, such as MS1Former,
classify hepatocellular carcinoma spectra end-to-end and achieve pathology-level accuracy (95).
Furthermore, metabolomics complements these data. RF and SVMs trained on plasma metabolites
separate ER-positive from ER-negative breast cancers and anticipate therapeutic benefit in gastric
cancer (96, 97). Spatial proteomics involves mapping proteins in a spatial context, which helps elucidate
tumor heterogeneity (98, 99). Microfluidic imaging hybrids, combined with graph deep learning,
delineate immune cell niches and identify perturbations that enhance T-cell infiltration (100, 101). DL
has transformed cancer radiology with three-dimensional CNNs trained on National Lung Screening
Trial data, achieving an AUC of greater than 94% for lung cancer prediction (102).

Meanwhile, a mammography model surpassed expert radiologists in breast cancer detection on two
continents (103). Radiomics, the high-throughput extraction of texture, shape, and intensity features,
links imaging phenotypes to genomics and outcomes, and is now reviewed as a pillar of personalized
oncology (104). In digital pathology, CNNs trained on whole-slide images can classify non-small cell
lung cancer subtypes with an AUC of approximately 0.97 and even infer actionable mutations directly
from H&E slides (105). Weakly-supervised multiple-instance systems scale these capabilities to
millions of slides, setting the stage for foundation models that jointly embed image tiles and text reports
(106, 107). Spatially resolved assays extend conventional pathology by employing multiplex
immunofluorescence (mlF) and spatial transcriptomics, which are analyzed with graph neural networks
and attention mechanisms, to map cell-cell interactions that govern immune evasion and therapy
resistance (108). Such spatial signatures already stratify response to neoadjuvant chemotherapy in
triple-negative breast cancer (109).

Structured EHR tables have long powered GBM and RF risk models, but transformer-based sequence
models now capture complex, irregular patient trajectories and set new state-of-the-art benchmarks on
multiple oncology prediction tasks (110). Natural-language-processing (NLP) systems based on
BioBERT or GPT derivatives accurately extract stage, receptor status, and adverse events from
pathology and follow-up notes, converting narrative text into ML-ready features (111). Privacy remains
paramount. Systematic reviews document that federated learning improves generalizability across
hospitals while complying with data-protection regulations, and that differential privacy (DP) noise can
be added with only modest accuracy loss (112). Synthetic EHR generators provide an alternative
approach, enabling open sharing when DP budgets are exhausted.

Further advancing the analysis of unstructured data, Large Language Models (LLMs), such as those
powering GPT, have emerged as a transformative technology. While earlier NLP models, such as
BioBERT, required task-specific fine-tuning, modern LLMs demonstrate zero-shot or few-shot
capabilities, enabling them to perform complex tasks with minimal specialized training (113). In
oncology, their applications are rapidly expanding. LLMs can efficiently extract structured information,
such as cancer stage, treatment regimens, and genomic alterations, from unstructured pathology reports
and clinical notes, reducing the manual workload on clinicians and researchers.
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Beyond data extraction, LLMs are being explored for advanced clinical decision support. By
synthesizing information from vast biomedical literature, clinical trial databases, and individual patient
records, these models can help generate treatment recommendations for multidisciplinary tumor boards,
often identifying a broader range of options than manual review alone (114-116). Furthermore, LLMs
show promise in hypothesis generation by identifying novel patterns and drug combinations in the
scientific literature, thereby accelerating discovery in cancer research. However, challenges such as the
risk of generating factually incorrect information ("hallucinations"), ensuring data privacy, and
addressing inherent biases must be addressed before their widespread and reliable integration into
clinical practice (117, 118).

The integration of massive, heterogencous biomedical datasets, encompassing continuous gene-
expression profiles, sparse genetic variants, pixelated medical images, and unstructured clinical texts,
remains an analytical challenge. These complexities are compounded by differing time stamps, missing
data modalities, and pervasive batch effects, all of which render joint analysis far from trivial.
Traditional early-fusion models address this by simply concatenating features, while late-fusion
ensembles average predictions from modality-specific models. In contrast, intermediate-fusion
strategies, such as transformer architectures that share attention heads but retain separate modality
encoders, offer a balanced approach. Comparative surveys consistently show that these intermediate
methods achieve the most favorable trade-off between accuracy and interpretability (92). Recent
advances include the application of graph neural networks, which overlay molecular interaction
networks onto patient-level data (119). Knowledge-guided Bayesian frameworks also contribute by
encoding biological pathways as informative priors, thereby mitigating overfitting, particularly in
studies with limited sample sizes. Meanwhile, foundation models, pretrained on millions of images and
billions of textual data points, such as MUSK, BiomedCLIP, and HONeYBEE, demonstrate robust
cross-modality and cross-task generalization, leading to improved performance in applications ranging
from lung cancer screening to automated pathology report generation (107, 120, 121). A notable
example of clinical impact is the use of MRI-based digital twins, which integrate imaging data, genomic
information, and treatment parameters to enhance patient care. These models have achieved
approximately a 10% improvement in predicting pathological complete response in triple-negative
breast cancer, compared to radiomics-based approaches alone (109). In parallel, conceptual and
regulatory frameworks for these so-called “living models” are rapidly emerging to support their clinical
translation (8). Nonetheless, persistent obstacles remain, including: (i) robust imputation strategies for
systematically missing modalities; (ii) harmonization of data acquisition protocols; (iii) the
development of standardized explainability metrics across heterogeneous data types; and (iv) ensuring
equitable model performance across diverse ancestries and healthcare environments (122-126).
Community-driven initiatives, such as The Cancer Genome Atlas (TCGA), The Cancer Imaging
Archive, and pan-European FAIR data projects, are progressively addressing these challenges (127-
131). Collectively, these efforts are expected to accelerate the clinical adoption of trustworthy, multi-
modal ML systems in oncology. Figure 4 illustrates the core data modalities used in precision oncology
and the ML models applied to each. The integration of heterogeneous biomedical datasets underpins
ML-driven clinical innovation. The following section examines how these methodological advances
are being applied in clinical oncology settings to optimize treatment, personalize immunotherapy, and
develop patient-specific digital twins.
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Figure 4. Core data modalities and their
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8. Applications of machine learning in clinical oncology

Building upon the preceding discussion of data modalities and computational frameworks, this section
shifts from methodological foundations to the translational applications of ML in oncology. Here, we
examine how diverse ML algorithms are being synthesized and applied to address high-impact clinical
challenges across three domains: (i) the optimization of conventional chemotherapy and radiotherapy,
focusing on treatment planning and response stratification; (ii) the personalization of immunotherapy
and targeted therapy, where models guide patient selection and predict therapeutic efficacy; and (iii)
the development of patient-specific digital twins, which integrate multimodal data to simulate disease
progression and forecast treatment outcomes. Together, these domains exemplify the practical
translation of computational models into decision-support tools that enable personalized cancer care.

ML has markedly enhanced the personalization of chemotherapy and radiotherapy. Predictive models
that integrate genomics, imaging, and clinical data now accurately estimate patient-specific treatment
responses and toxicities, enabling more precise dose and schedule optimization. Beyond
methodological progress, several clinically oriented ML applications have demonstrated clear
translational potential. For example, deep learning models that predict Pareto-optimal dose distributions
for intensity-modulated radiotherapy (IMRT) have enabled individualized planning in prostate cancer
cohorts (132). Similarly, learning-based beam-angle selection systems have achieved tumor coverage
and organ-at-risk sparing comparable to those of expert-generated plans in thoracic IMRT (133).
Moreover, reinforcement learning frameworks have been successfully applied to optimize fractionation
schedules in lung cancer radiotherapy (72) and to design adaptive chemotherapy regimens tailored to
patient variability (70). These developments underscore how ML, particularly deep and reinforcement
learning, is evolving from theoretical optimization toward clinically deployable tools for precision
chemoradiotherapy.

ML is also transforming patient stratification and treatment personalization in immunotherapy and
targeted therapy, key pillars of modern precision oncology. Several Al-based deep-learning frameworks
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have now demonstrated clinical validity. For instance, an automated model for PD-LI
immunohistochemistry scoring in lung cancer exhibited high concordance with pathologist assessments
(134). In skin cutaneous melanoma, ML-derived immune-cell-related gene signatures have been shown
to predict both prognosis and response to immune checkpoint inhibitors (135). Additionally, radiomics-
based ML pipelines achieved high predictive performance (AUCs) in forecasting immunotherapy
outcomes for inoperable advanced non-small-cell lung cancer (136). Furthermore, in EGFR-mutant
lung adenocarcinoma, integrative deep-learning models that combine CT imaging, histopathology, and
clinical data successfully predict sensitivity to HER-targeted therapies (137). Together, these
translational studies demonstrate that ML is moving decisively beyond proof-of-concept research
toward real-world clinical implementation in immunotherapy and targeted therapy.

Patient-specific digital twins are rapidly maturing from conceptual frameworks into translational tools
that integrate longitudinal imaging, molecular profiles, and clinical data to simulate individualized
tumor dynamics and test treatment strategies in silico. Recent imaging-guided efforts have shown that
calibrating mechanistic tumor growth models with serial quantitative MRI enables accurate, patient-
level prediction of response to neoadjuvant chemotherapy in triple-negative breast cancer cohorts,
demonstrating clear translational potential (138). Complementing these developments, recent studies
have shown the feasibility of digital twin—based diagnostic frameworks for early cancer detection. For
instance, an automated cervical cancer detection digital twin, developed using the STIPaKMeD dataset,
has shown how virtual patient models can be integrated with ML to enhance diagnostic precision and
workflow efficiency. In this system, the proposed CervixNet classifier used RNNs to extract 1,172
imaging features, followed by PCA to reduce dimensionality to 792 key features, achieving 98.91%
classification accuracy across all cervical cell classes, particularly when using an SVM (139). This
framework highlights how digital twins can bridge the gap between patients, clinicians, and
computational models within a scalable, intelligent healthcare ecosystem, underscoring their broader
potential in oncology diagnostics and treatment planning. Robust digital-twin construction requires
multimodal data fusion, uncertainty quantification, and frequent synchronization with incoming clinical
measurements to support safe decision-making and prospective evaluation. Methodological advances
that couple fast, reduced-order mechanistic models with machine-learning surrogates enable rapid,
spatially resolved simulations suitable for clinical workflows. At the same time, early clinical-
translation reports illustrate how digital twins can be used to (i) prioritize individual treatment regimens,
(i1) forecast the likelihood of pathological complete response, and (iii) run virtual trials of adaptive
dosing or sequencing strategies before patient exposure (140). Despite their early developmental stage,
emerging evidence suggests that well-validated, transparent, and clinician-guided digital twins have the
potential to evolve into robust platforms for personalized therapy optimization and adaptive trial design
in oncology.

9. Regulatory, economic, and implementation considerations

In the United States, most oncology Al tools are regulated as Software as a Medical Device (SaMD) or
“device software functions” by the FDA’s Center for Devices and Radiological Health (141). The
agency adopts a total product lifecycle approach. It primarily clears Al tools through the 510(k) pathway
when a predicate device exists; novel tools may proceed via De Novo, whereas relatively few require
PMA. In 2024-2025, the FDA finalized guidance on Predetermined Change Control Plans (PCCPs) for
Al-enabled devices, enabling manufacturers to pre-specify data, validation methods, and guardrails for
future model updates while maintaining safety and effectiveness (142). The FDA also endorses Good
Machine Learning Practice (GMLP) principles for data quality, model development, transparency, and
post-market monitoring (143). Together, these documents define expectations for clinical evidence,
human oversight, real-world performance monitoring, and controlled updates of learning systems. The
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EU AI Act entered into force on 1 August 2024. Medical Al used as (or within) medical devices is
generally classified as high-risk, which triggers obligations for providers and deployers, including risk
management, data governance, technical documentation, logging, transparency/human-oversight
measures, robustness, and post-market monitoring (144-146). Several products have already been
authorized, including Al tools for breast cancer screening (ProFound Al, Transpara), real-time
colorectal polyp detection (GI Genius), prostate pathology (Paige Prostate, Ibex Galen), prostate MRI
interpretation (Quantib Prostate), and lung nodule malignancy assessment (Optellum).

Beyond regulatory approval, economic and implementation factors need to be considered. The
introduction of Al entails costs for licensing, integration, storage, and maintenance; however, it may
yield savings by improving diagnostic efficiency and enabling earlier cancer detection. For instance, a
recent cost-effectiveness simulation suggests that adding an Al-based system to low-dose CT lung
cancer screening is both less costly and more effective, demonstrating a favorable economic profile
(147). Similarly, in pathology, Al has reduced diagnostic time; for example, the Paige Prostate system
enabled pathologists to reduce slide reviews from 579 to approximately 200, cutting diagnosis time
from around 15.8 hours to 6.8 hours (a ~65% reduction).

The effect of Al on physician workload is nuanced. In one analysis of Al-driven imaging workflows,
more than 85% of studies projected that Al would increase workload, primarily due to increased post-
processing and interpretation demands (148, 149). Infrastructure requirements also pose challenges:
clinical deployment of Al in imaging typically demands vendor-neutral, future-proof platforms with
secure architectures, high-performance computing, and integration with PACS, EHR, and IT systems
(150). These factors indicate that the successful translation of oncology Al hinges not only on technical
performance but also on a cost-effective roadmap, workforce impact, and institutional readiness.

Discussion

The integration of ML into clinical oncology holds immense promise, but its successful translation from
research to routine practice requires overcoming systemic challenges that extend beyond algorithmic
performance. The foundation of any model is its data, and here, hurdles persist. Key among them is data
heterogeneity, in which models trained on uniform data from a single institution often fail to generalize
across diverse patient ancestries and varied data acquisition protocols (151). This issue is compounded
by class imbalance, especially for rare cancers or mutational subtypes, which can bias model
performance (152). Future progress will depend on developing robust data harmonization techniques
and federated learning frameworks that enable training on multi-institutional data without
compromising patient privacy (153, 154). Furthermore, research on synthetic data generation using
GAN:Ss or diffusion models offers a promising avenue for augmenting training cohorts and mitigating
data scarcity.

Beyond the data itself, the models pose barriers to adoption. The "black box" nature of many DL
algorithms impedes interpretability, a factor that undermines clinician trust and complicates regulatory
scrutiny. There is also a risk of algorithmic bias, where models perpetuate or even amplify historical
inequities present in training data, leading to inequitable performance across demographic groups. To
address these issues, the field must prioritize explainable Al (XAlI), including the development of
inherently interpretable models and the rigorous validation of post-hoc explanation methods (155, 156).
To combat bias, systematic algorithmic auditing across diverse, multi-center datasets must become
standard practice before clinical deployment (157).
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Finally, even a technically robust and fair model is clinically useful only if it can be integrated into
existing healthcare ecosystems. Hurdles include a lack of interoperability between ML platforms and
hospital information systems, as well as the need for clear regulatory and ethical frameworks to govern
the use of Al as a medical device (158). The substantial computational cost and requirement for
specialized infrastructure can also limit adoption. Therefore, future success hinges on closer
collaboration among data scientists, clinicians, ethicists, and policymakers to build interoperable digital
health ecosystems that support continuous learning and improvement. Ultimately, the path to
widespread adoption requires rigorous prospective multicenter trials that demonstrate not only
algorithmic accuracy but also tangible clinical utility and patient benefit, which are necessary to secure
clinician trust and regulatory approval.

ML techniques have rapidly matured from exploratory classifiers applied to small gene-expression
matrices into a robust, multi-modal ecosystem that now informs every stage of the oncology care
continuum. Contemporary supervised, unsupervised, deep-learning, and reinforcement-learning
frameworks routinely achieve expert-level accuracy in tumor detection, molecular sub-typing,
prognosis, and treatment-response prediction, while emerging graph and transformer architectures are
beginning to uncover higher-order biological interactions and to power digital-twin simulations of
individual patients (3, 8, 56, 76, 107). The concurrent evolution of privacy-preserving data-centric
strategies, federated learning, differential privacy, and synthetic-data generation, together with the
growth of international consortia (e.g., TCGA, AACR Project GENIE), has expanded both the diversity
and quality of training corpora, thereby improving generalizability across ancestries, institutions, and
acquisition platforms (17, 89, 112). As a result, ML-enabled precision oncology has progressed from
proof-of-concept demonstrations into validated clinical decision-support tools that can stratify risk more
finely than traditional staging systems, standardize biomarker assessment, and suggest adaptive therapy
schedules likely to improve both survival and quality of life (29, 35, 69, 75).

Nevertheless, the field now stands at an inflection point where technical performance must translate
into trustworthy, equitable, and scalable clinical deployment. Key priorities include: (i) rigorous,
prospective multi-center trials and post-marketing surveillance to ensure external validity; (ii)
harmonized reporting standards and explainable-Al frameworks that expose model logic to clinicians,
regulators and patients (15); (iii) systematic mitigation of algorithmic bias so that benefits accrue across
demographic groups and resource-constrained settings (33).; and (iv) integration of ML outputs into
interoperable electronic-health-record and imaging infrastructures that support continuous learning and
clinician feedback loops (19). Addressing these challenges will require closer collaboration among data
scientists, biologists, clinicians, ethicists, and policymakers, as well as sustained investment in open,
FAIR (Findable, Accessible, Interoperable, Reusable) data resources. If these hurdles are met, next-
generation ML, anchored by foundation models capable of reasoning across images, omics, and free
text, will be poised to deliver truly personalized, dynamically adaptive oncology that maximizes
therapeutic efficacy while minimizing harm, fulfilling the long-promised vision of precision cancer
medicine (107, 120, 121).
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